Stratton Shannon M, Liu Yeou-Teh, Hong Siang Lee, Mayer-Kress Gottfried, Newell Karl M
Department of Kinesiology, The Pennsylvania State University, University Park, 16802, USA.
J Mot Behav. 2007 Nov;39(6):503-15. doi: 10.3200/JMBR.39.6.503-516.
The authors investigated the time scales of the learning of a mirror-tracing task to reexamine G. S. Snoddy's (1926) original claim and the received theoretical view (A. Newell & P. S. Rosenbloom, 1981) that motor learning follows a power law. Adult participants (N = 16) learned the tracing task in either a normal or a reversed visual-image condition over 5 consecutive days of practice and then performed 1 day of practice 1 week later and again 1 month later. The reversed-image group's performance was poorer than that of the normal-image group throughout the practice. An exponential was the best fitting function on individual data, but the power-law function was the best fit on the group-averaged data. The findings provided preliminary evidence that 2 characteristic time scales, (a) fast, dominated by warm-up, and (b) slow, dominated by persistent change, capture individuals' performance in the learning of the mirror-tracing task.
作者研究了镜像追踪任务学习的时间尺度,以重新审视G. S. 斯诺迪(1926年)的原始主张以及公认的理论观点(A. 纽厄尔和P. S. 罗森布卢姆,1981年),即运动学习遵循幂律。成年参与者(N = 16)在连续5天的练习中,于正常或反转视觉图像条件下学习追踪任务,然后在1周后进行1天的练习,并在1个月后再次进行练习。在整个练习过程中,反转图像组的表现比正常图像组差。指数函数是对个体数据的最佳拟合函数,但幂律函数是对组平均数据的最佳拟合。研究结果提供了初步证据,表明两个特征时间尺度,(a)快速的,以热身为主导,以及(b)缓慢的,以持续变化为主导,能够捕捉个体在镜像追踪任务学习中的表现。