Suppr超能文献

白色念珠菌的多药转运蛋白CaCdr1p和CaMdr1p表现出不同的脂质特异性:麦角固醇和鞘脂对于将CaCdr1p靶向至膜筏都是必不可少的。

Multidrug transporters CaCdr1p and CaMdr1p of Candida albicans display different lipid specificities: both ergosterol and sphingolipids are essential for targeting of CaCdr1p to membrane rafts.

作者信息

Pasrija Ritu, Panwar Sneh Lata, Prasad Rajendra

机构信息

Membrane Biology Laboratory, Jawaharlal Nehru University, School of Life Sciences, JNU Campus, New Mehrauli Road, New Delhi 110067, India.

出版信息

Antimicrob Agents Chemother. 2008 Feb;52(2):694-704. doi: 10.1128/AAC.00861-07. Epub 2007 Dec 3.

Abstract

In this study, we compared the effects of altered membrane lipid composition on the localization of two membrane drug transporters from different superfamilies of the pathogenic yeast Candida albicans. We demonstrated that in comparison to the major facilitator superfamily multidrug transporter CaMdr1p, ATP-binding cassette transporter CaCdr1p of C. albicans is preferentially localized within detergent-resistant membrane (DRM) microdomains called 'rafts.' Both CaCdr1p and CaMdr1p were overexpressed as green fluorescent protein (GFP)-tagged proteins in a heterologous host Saccharomyces cerevisiae, wherein either sphingolipid (Deltasur4 or Deltafen1 or Deltaipt1) or ergosterol (Deltaerg24 or Deltaerg6 or Deltaerg4) biosynthesis was compromised. CaCdr1p-GFP, when expressed in the above mutant backgrounds, was not correctly targeted to plasma membranes (PM), which also resulted in severely impaired drug resistance. In contrast, CaMdr1p-GFP displayed no sorting defect in the mutant background and remained properly surface localized and displayed no change in drug resistance. Our data clearly show that CaCdr1p is selectively recruited, over CaMdr1p, to the DRM microdomains of the yeast PM and that any imbalance in the raft lipid constituents results in missorting of CaCdr1p.

摘要

在本研究中,我们比较了膜脂组成改变对致病性白色念珠菌不同超家族的两种膜药物转运蛋白定位的影响。我们证明,与主要易化子超家族多药转运蛋白CaMdr1p相比,白色念珠菌的ATP结合盒转运蛋白CaCdr1p优先定位于称为“脂筏”的耐去污剂膜(DRM)微结构域内。CaCdr1p和CaMdr1p均作为绿色荧光蛋白(GFP)标记的蛋白在异源宿主酿酒酵母中过表达,其中鞘脂(Deltasur4或Deltafen1或Deltaipt1)或麦角固醇(Deltaerg24或Deltaerg6或Deltaerg4)的生物合成受到损害。当在上述突变背景中表达时,CaCdr1p-GFP不能正确靶向质膜(PM),这也导致耐药性严重受损。相比之下,CaMdr1p-GFP在突变背景中未显示分选缺陷,仍正确定位于表面,且耐药性无变化。我们的数据清楚地表明,与CaMdr1p相比,CaCdr1p被选择性募集到酵母PM的DRM微结构域,并且脂筏脂质成分的任何失衡都会导致CaCdr1p分选错误。

相似文献

3
Fungicidal action of geraniol against Candida albicans is potentiated by abrogated CaCdr1p drug efflux and fluconazole synergism.
PLoS One. 2018 Aug 29;13(8):e0203079. doi: 10.1371/journal.pone.0203079. eCollection 2018.
4
Membrane raft lipid constituents affect drug susceptibilities of Candida albicans.
Biochem Soc Trans. 2005 Nov;33(Pt 5):1219-23. doi: 10.1042/BST20051219.
5
Membrane sphingolipid-ergosterol interactions are important determinants of multidrug resistance in Candida albicans.
Antimicrob Agents Chemother. 2004 May;48(5):1778-87. doi: 10.1128/AAC.48.5.1778-1787.2004.
7
Specific interactions between the Candida albicans ABC transporter Cdr1p ectodomain and a D-octapeptide derivative inhibitor.
Mol Microbiol. 2012 Aug;85(4):747-67. doi: 10.1111/j.1365-2958.2012.08140.x. Epub 2012 Jul 13.
8
Functional analysis of CaIPT1, a sphingolipid biosynthetic gene involved in multidrug resistance and morphogenesis of Candida albicans.
Antimicrob Agents Chemother. 2005 Aug;49(8):3442-52. doi: 10.1128/AAC.49.8.3442-3452.2005.
9
Inhibitors of the Candida albicans Major Facilitator Superfamily Transporter Mdr1p Responsible for Fluconazole Resistance.
PLoS One. 2015 May 7;10(5):e0126350. doi: 10.1371/journal.pone.0126350. eCollection 2015.

引用本文的文献

5
Cdr1 in focus: a personal reflection on multidrug transporter research.
FEMS Yeast Res. 2025 Jan 30;25. doi: 10.1093/femsyr/foaf003.
6
Impact of ERG6 Gene Deletion on Membrane Composition and Properties in the Pathogenic Yeast Candida glabrata.
Cell Biochem Biophys. 2025 Jun;83(2):1909-1918. doi: 10.1007/s12013-024-01599-w. Epub 2024 Oct 31.
9
Step-wise evolution of azole resistance through copy number variation followed by KSR1 loss of heterozygosity in Candida albicans.
PLoS Pathog. 2024 Aug 30;20(8):e1012497. doi: 10.1371/journal.ppat.1012497. eCollection 2024 Aug.

本文引用的文献

1
Candida albicans drug resistance another way to cope with stress.
Microbiology (Reading). 2007 Oct;153(Pt 10):3211-3217. doi: 10.1099/mic.0.2007/010405-0.
4
Efflux pump overexpression in multiple-antibiotic-resistant mutants of Bacteroides fragilis.
Antimicrob Agents Chemother. 2006 Sep;50(9):3150-3. doi: 10.1128/AAC.00141-06.
5
Multiple resistance mechanisms to azole antifungals in yeast clinical isolates.
Drug Resist Updat. 1998;1(4):255-65. doi: 10.1016/s1368-7646(98)80006-x.
7
Proteomics of plant detergent-resistant membranes.
Mol Cell Proteomics. 2006 Aug;5(8):1396-411. doi: 10.1074/mcp.M600044-MCP200. Epub 2006 Apr 28.
8
Proteomic analysis of detergent-resistant membranes from Candida albicans.
Proteomics. 2006 Apr;6 Suppl 1:S74-81. doi: 10.1002/pmic.200500465.
10
Complete inventory of ABC proteins in human pathogenic yeast, Candida albicans.
J Mol Microbiol Biotechnol. 2005;9(1):3-15. doi: 10.1159/000088141.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验