Zuidema Erik, Escorihuela Laura, Eichelsheim Tanja, Carbó Jorge J, Bo Carles, Kamer Paul C J, van Leeuwen Piet W N M
Van't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam,, The Netherlands.
Chemistry. 2008;14(6):1843-53. doi: 10.1002/chem.200700727.
The rate-determining step in the hydroformylation of 1-octene, catalysed by the rhodium-Xantphos catalyst system, was determined by using a combination of experimentally determined (1)H/(2)H and (12)C/(13)C kinetic isotope effects and a theoretical approach. From the rates of hydroformylation and deuterioformylation, a small (1)H/(2)H isotope effect of 1.2 was determined for the hydride moiety of the rhodium catalyst. (12)C/(13)C isotope effects of 1.012(1) and 1.012(3) for the alpha-carbon and beta-carbon atoms of 1-octene were determined, respectively. Both quantum mechanics/molecular mechanics (QM/MM) and full quantum mechanics calculations were carried out on the key catalytic steps, for "real-world" ligand systems, to clarify whether alkene coordination or hydride migration is the rate-determining step. Our calculations (21.4 kcal mol(-1)) quantitatively reproduce the experimental energy barrier for CO dissociation (20.1 kcal mol(-1)) starting at the (bisphosphane)RhH(CO)(2) resting state. The barrier for hydride migration lies 3.8 kcal mol(-1) higher than the barrier for CO dissociation (experimentally determined trend approximately 3 kcal mol(-1)). The computed (1)H/(2)H and (12)C/(13)C kinetic isotope effects corroborate the results of the energy analysis.
通过结合实验测定的氢/氘和碳-12/碳-13动力学同位素效应以及理论方法,确定了铑-联二萘酚膦催化剂体系催化1-辛烯氢甲酰化反应的速率决定步骤。根据氢甲酰化反应和氘代甲酰化反应的速率,确定了铑催化剂氢化物部分的氢/氘同位素效应较小,为1.2。分别测定了1-辛烯α-碳原子和β-碳原子的碳-12/碳-13同位素效应为1.012(1)和1.012(3)。针对“实际”配体体系,对关键催化步骤进行了量子力学/分子力学(QM/MM)和全量子力学计算,以阐明烯烃配位或氢化物迁移是否为速率决定步骤。我们的计算结果(21.4 kcal mol⁻¹)定量再现了从(双膦)RhH(CO)₂静止状态开始的一氧化碳解离的实验能垒(20.1 kcal mol⁻¹)。氢化物迁移的能垒比一氧化碳解离的能垒高3.8 kcal mol⁻¹(实验确定的趋势约为3 kcal mol⁻¹)。计算得到的氢/氘和碳-12/碳-13动力学同位素效应证实了能量分析的结果。