Andersen Kell K, Westh Peter, Otzen Daniel E
Interdisciplinary Nanoscience Centre, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark.
Langmuir. 2008 Jan 15;24(2):399-407. doi: 10.1021/la702890y. Epub 2007 Dec 11.
Surfactants interact with proteins in multifarious ways which depend on surfactant concentration and structure. To obtain a global overview of this process, we have analyzed the interaction of horse myoglobin (Mb) with an anionic (SDS) and cationic (CTAC) surfactant, using both equilibrium titration techniques and stopped-flow kinetics. Binding and kinetics of conformational changes can be divided into a number of different regions (five below the cmc and one above) with very distinct features (broadly similar between the two surfactants, despite their difference in head group and chain length), which nuance the classical view of biphasic binding prior to micellization. In stage A, fairly weak interactions lead to a linear decrease in thermal stability. This gives way to a more cooperative process in stage B, where aggregates (presumably hemimicelles) start to form on the protein surface, leading to global denaturation (loss of a thermal transition) and biphasic unfolding kinetics. This is consolidated in stage C with titratable surfactant adsorption. Adsorption of this surfactant species leads to significant changes in kinetics, namely, inhibition of unfolding kinetics in CTAC and altered unfolding amplitudes in SDS, though the process is still biphasic in both surfactants. Stage D commences the reduction in exothermic binding signals, leading to further uptake of 5 (SDS) or 31 (CTAC) surfactant molecules without any major changes in protein conformation. In stage E many more surfactant molecules (46 SDS and 39 CTAC) are bound, presumably as quasi-micellar structures, and we observe a very slow unfolding phase in SDS, which disappears as we reach the cmc. Above the cmc, the unfolding rates remain essentially constant in SDS, but increase significantly in CTAC, possibly because binding of bulk micelles removes the inhibition by hemimicellar aggregates. Our work highlights the fascinating richness of conformational changes that proteins can undergo in the presence of molecules with self-assembling properties.
表面活性剂与蛋白质以多种方式相互作用,这取决于表面活性剂的浓度和结构。为了全面了解这一过程,我们使用平衡滴定技术和停流动力学,分析了马肌红蛋白(Mb)与阴离子表面活性剂(SDS)和阳离子表面活性剂(CTAC)的相互作用。构象变化的结合和动力学可分为多个不同区域(临界胶束浓度以下有五个区域,以上有一个区域),各区域具有非常明显的特征(尽管两种表面活性剂的头基和链长不同,但大体相似),这细微地改变了胶束化之前双相结合的经典观点。在A阶段,相当弱的相互作用导致热稳定性呈线性下降。这在B阶段让位于一个更协同的过程,此时聚集体(可能是半胶束)开始在蛋白质表面形成,导致整体变性(热转变消失)和双相解折叠动力学。这在C阶段通过可滴定的表面活性剂吸附得到巩固。这种表面活性剂物种的吸附导致动力学发生显著变化,即CTAC中解折叠动力学受到抑制,SDS中解折叠幅度改变,不过两种表面活性剂中的过程仍然是双相的。D阶段开始时放热结合信号减弱,导致进一步摄取5个(SDS)或31个(CTAC)表面活性剂分子,而蛋白质构象没有任何重大变化。在E阶段,结合了更多的表面活性剂分子(46个SDS和39个CTAC),推测为准胶束结构,我们在SDS中观察到一个非常缓慢的解折叠阶段,在达到临界胶束浓度时该阶段消失。在临界胶束浓度以上,SDS中的解折叠速率基本保持恒定,但CTAC中的解折叠速率显著增加,这可能是因为大量胶束的结合消除了半胶束聚集体的抑制作用。我们的工作突出了蛋白质在具有自组装性质的分子存在下可能经历的构象变化的迷人丰富性。