Suppr超能文献

用导电聚合物纳米管修饰的可植入神经微电极的实验与理论表征

Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes.

作者信息

Abidian Mohammad Reza, Martin David C

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Biomaterials. 2008 Mar;29(9):1273-83. doi: 10.1016/j.biomaterials.2007.11.022.

Abstract

Neural prostheses transduce bioelectric signals to electronic signals at the interface between neural tissue and neural microelectrodes. A low impedance electrode-tissue interface is important for the quality of signal during recording as well as quantity of applied charge density during stimulation. However, neural microelectrode sites exhibit high impedance because of their small geometric surface area. Here we analyze nanostructured-conducting polymers that can be used to significantly decrease the impedance of microelectrode typically by about two orders of magnitude and increase the charge transfer capacity of microelectrodes by three orders of magnitude. In this study poly(pyrrole) (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) nanotubes were electrochemically polymerized on the surface of neural microelectrode sites (1250 microm(2)). An equivalent circuit model comprising a coating capacitance in parallel with a pore resistance and interface impedance in series was developed and fitted to experimental results to characterize the physical and electrical properties of the interface. To confirm that the fitting parameters correlate with physical quantities of interface, theoretical equations were used to calculate the parameter values thereby validating the proposed model. Finally, an apparent diffusion coefficient was calculated for PPy film (29.2+/-1.1 x 10(-6) cm(2)/s), PPy nanotubes (PPy NTs) (72.4+/-3.3 x 10(-6) cm(2)/s), PEDOT film (7.4+/-2.1 x 10(-6) cm(2)/s), and PEDOT nanotubes (PEDOT NTs) (13.0+/-1.8 x 10(-6) cm(2)/s). The apparent diffusion coefficient of conducting polymer nanotubes was larger than the corresponding conducting polymer films.

摘要

神经假体在神经组织与神经微电极的界面处将生物电信号转换为电信号。低阻抗电极 - 组织界面对于记录期间的信号质量以及刺激期间施加的电荷密度数量都很重要。然而,神经微电极位点由于其几何表面积小而呈现高阻抗。在此,我们分析了纳米结构导电聚合物,其可用于显著降低微电极的阻抗,通常可降低约两个数量级,并将微电极的电荷转移能力提高三个数量级。在本研究中,聚吡咯(PPy)和聚(3,4 - 亚乙二氧基噻吩)(PEDOT)纳米管在神经微电极位点(1250平方微米)的表面进行了电化学聚合。开发了一个等效电路模型,该模型包括一个与孔隙电阻并联且与界面阻抗串联的涂层电容,并将其拟合到实验结果中,以表征界面的物理和电学性质。为了确认拟合参数与界面的物理量相关,使用理论方程计算参数值,从而验证所提出的模型。最后,计算了PPy膜(29.2±1.1×10⁻⁶平方厘米/秒)、PPy纳米管(PPy NTs)(72.4±3.3×10⁻⁶平方厘米/秒)、PEDOT膜(7.4±2.1×10⁻⁶平方厘米/秒)和PEDOT纳米管(PEDOT NTs)(13.0±1.8×10⁻⁶平方厘米/秒)的表观扩散系数。导电聚合物纳米管的表观扩散系数大于相应的导电聚合物膜。

相似文献

3
Highly stable carbon nanotube doped poly(3,4-ethylenedioxythiophene) for chronic neural stimulation.
Biomaterials. 2011 Aug;32(24):5551-7. doi: 10.1016/j.biomaterials.2011.04.051. Epub 2011 May 20.
4
Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB.
Acta Biomater. 2016 Mar 1;32:57-67. doi: 10.1016/j.actbio.2015.12.022. Epub 2015 Dec 12.
7
In vitro and in vivo evaluation of PEDOT microelectrodes for neural stimulation and recording.
IEEE Trans Neural Syst Rehabil Eng. 2011 Jun;19(3):307-16. doi: 10.1109/TNSRE.2011.2109399. Epub 2011 Jan 31.
8
Aligned Conducting Polymer Nanotubes for Neural Prostheses.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:6080-6083. doi: 10.1109/EMBC.2018.8513649.
9
In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating.
Biosensors (Basel). 2015 Oct 13;5(4):618-46. doi: 10.3390/bios5040618.
10
Nanostructured PEDOT Coatings for Electrode-Neuron Integration.
ACS Appl Bio Mater. 2021 Jul 19;4(7):5556-5565. doi: 10.1021/acsabm.1c00375. Epub 2021 Jun 16.

引用本文的文献

1
Chronic Probing of Deep Brain Neuronal Activity Using Nanofibrous Smart Conducting Hydrogel-Based Brain-Machine Interface Probes.
Small Sci. 2025 Jan 28;5(5):2400463. doi: 10.1002/smsc.202400463. eCollection 2025 May.
4
High-Density, Conformable Conducting Polymer-Based Implantable Neural Probes for the Developing Brain.
Adv Healthc Mater. 2024 Sep;13(24):e2304164. doi: 10.1002/adhm.202304164. Epub 2024 Apr 19.
5
Resorbable conductive materials for optimally interfacing medical devices with the living.
Front Bioeng Biotechnol. 2024 Feb 21;12:1294238. doi: 10.3389/fbioe.2024.1294238. eCollection 2024.
6
E-Suture: Mixed-Conducting Suture for Medical Devices.
Adv Healthc Mater. 2024 Sep;13(24):e2302613. doi: 10.1002/adhm.202302613. Epub 2024 Jan 14.
7
Recent Advancements in Graphene-Based Implantable Electrodes for Neural Recording/Stimulation.
Sensors (Basel). 2023 Dec 18;23(24):9911. doi: 10.3390/s23249911.
9
Applications of flexible electronics related to cardiocerebral vascular system.
Mater Today Bio. 2023 Aug 30;23:100787. doi: 10.1016/j.mtbio.2023.100787. eCollection 2023 Dec.

本文引用的文献

1
Conducting-Polymer Nanotubes for Controlled Drug Release.
Adv Mater. 2006 Feb 17;18(4):405-409. doi: 10.1002/adma.200501726.
2
Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump.
Nat Mater. 2007 Sep;6(9):673-9. doi: 10.1038/nmat1963. Epub 2007 Jul 22.
5
Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics.
Biomaterials. 2005 Jun;26(17):3511-9. doi: 10.1016/j.biomaterials.2004.09.037.
6
Conducting polymers grown in hydrogel scaffolds coated on neural prosthetic devices.
J Biomed Mater Res A. 2004 Dec 15;71(4):577-85. doi: 10.1002/jbm.a.30124.
7
Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays.
Invest Ophthalmol Vis Sci. 2003 Dec;44(12):5355-61. doi: 10.1167/iovs.02-0819.
8
Application of conducting polymers to biosensors.
Biosens Bioelectron. 2002 May;17(5):345-59. doi: 10.1016/s0956-5663(01)00312-8.
9
Biosensors from conjugated polyelectrolyte complexes.
Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):49-53. doi: 10.1073/pnas.012581399. Epub 2001 Dec 26.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验