Suppr超能文献

Rationale and feasibility study of a mechanical model for the testing of material fatigue in metal ureteral stents.

作者信息

Bafaloukas Nikos, Birch Malcom, Buchholz Noor

机构信息

Department of Urology, Barts and the London NHS Trust, London, United Kingdom.

出版信息

J Endourol. 2008 Feb;22(2):389-92. doi: 10.1089/end.2006.9862.

Abstract

BACKGROUND

Stents are used abundantly to maintain ureteral patency. The majority are plastic tubes that adjust easily to upper urinary-tract motion. Recently, a coiled-wire lumenless stent was introduced (ZebraStent, Neo Medical, Munich, Germany) to facilitate expulsion of stone fragments after lithotripsy. Its metal core is composed of Nitinol, with the soft J ends being of titanium. The thin shape considerably increases the extraluminal space. The ZebraStent stretches the ureter and also provides a surface for the fragments to glide along. In our 18-month experience with the ZebraStent, two of them fractured along the shaft. We sought to learn whether this complication resulted from a defect in stent design or from material fatigue secondary to constant movement.

MATERIALS AND METHODS

Our model is powered by an electric motor that produces a constant displacement similar to stent movements in vivo. The whole ZebraStent is embedded in a 37 degrees C waterbath to simulate physiological conditions within the ureter. We used an average displacement of 16 mm. The average frequency of ventilatory-cycle simulation was 20 times that in vivo, allowing us to collect data in a shorter time.

RESULTS

All 10 stents broke within the proximal Nitinol shaft at the equivalent of 4 to 6 months (125-179 days).

CONCLUSIONS

Our preliminary results show that all stents break after the equivalent of 4 or more months. The fact that this occurs in the homogenous proximal Nitinol shaft rather than at the welding point between the shaft and the titanium curl implies that breakage is secondary to material fatigue and not design error. Extensive testing is under way to confirm material fatigue as the cause of breakage. We hope to determine a safe dwelling time for these stents, which at the moment should not exceed 3 months.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验