Suppr超能文献

通过特定的重组实验揭示有丝分裂期高尔基体解体与重新组装的分子机制。

Molecular mechanism of mitotic Golgi disassembly and reassembly revealed by a defined reconstitution assay.

作者信息

Tang Danming, Mar Kari, Warren Graham, Wang Yanzhuang

机构信息

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA.

出版信息

J Biol Chem. 2008 Mar 7;283(10):6085-94. doi: 10.1074/jbc.M707715200. Epub 2007 Dec 21.

Abstract

In mammalian cells, flat Golgi cisternae closely arrange together to form stacks. During mitosis, the stacked structure undergoes a continuous fragmentation process. The generated mitotic Golgi fragments are distributed into the daughter cells, where they are reassembled into new Golgi stacks. In this study, an in vitro assay has been developed using purified proteins and Golgi membranes to reconstitute the Golgi disassembly and reassembly processes. This technique provides a useful tool to delineate the mechanisms underlying the morphological change. There are two processes during Golgi disassembly: unstacking and vesiculation. Unstacking is mediated by two mitotic kinases, cdc2 and plk, which phosphorylate the Golgi stacking protein GRASP65 and thus disrupt the oligomer of this protein. Vesiculation is mediated by the COPI budding machinery ARF1 and the coatomer complex. When treated with a combination of purified kinases, ARF1 and coatomer, the Golgi membranes were completely fragmented into vesicles. After mitosis, there are also two processes in Golgi reassembly: formation of single cisternae by membrane fusion, and restacking. Cisternal membrane fusion requires two AAA ATPases, p97 and NSF (N-ethylmaleimide-sensitive fusion protein), each of which functions together with specific adaptor proteins. Restacking of the newly formed Golgi cisternae requires dephosphorylation of Golgi stacking proteins by the protein phosphatase PP2A. This systematic study revealed the minimal machinery that controls the mitotic Golgi disassembly and reassembly processes.

摘要

在哺乳动物细胞中,扁平的高尔基体潴泡紧密排列在一起形成堆叠结构。在有丝分裂期间,堆叠结构会经历持续的碎片化过程。产生的有丝分裂高尔基体片段被分配到子细胞中,在那里它们重新组装成新的高尔基体堆叠。在这项研究中,利用纯化的蛋白质和高尔基体膜开发了一种体外测定方法,以重建高尔基体的解体和重新组装过程。这项技术为阐明形态变化背后的机制提供了一个有用的工具。高尔基体解体过程中有两个步骤:解堆叠和囊泡化。解堆叠由两种有丝分裂激酶cdc2和plk介导,它们使高尔基体堆叠蛋白GRASP65磷酸化,从而破坏该蛋白的寡聚体。囊泡化由COPI出芽机制ARF1和外被体复合物介导。当用纯化的激酶、ARF1和外被体的组合处理时,高尔基体膜完全碎片化形成囊泡。有丝分裂后,高尔基体重新组装也有两个步骤:通过膜融合形成单个潴泡,以及重新堆叠。潴泡膜融合需要两种AAA型ATP酶,p97和NSF(N - 乙基马来酰亚胺敏感融合蛋白),它们各自与特定的衔接蛋白共同发挥作用。新形成的高尔基体潴泡的重新堆叠需要蛋白磷酸酶PP2A使高尔基体堆叠蛋白去磷酸化。这项系统性研究揭示了控制有丝分裂高尔基体解体和重新组装过程的最小机制。

相似文献

1
Molecular mechanism of mitotic Golgi disassembly and reassembly revealed by a defined reconstitution assay.
J Biol Chem. 2008 Mar 7;283(10):6085-94. doi: 10.1074/jbc.M707715200. Epub 2007 Dec 21.
2
Reconstitution of the cell cycle-regulated Golgi disassembly and reassembly in a cell-free system.
Nat Protoc. 2010 Apr;5(4):758-72. doi: 10.1038/nprot.2010.38. Epub 2010 Apr 1.
3
The localization and phosphorylation of p47 are important for Golgi disassembly-assembly during the cell cycle.
J Cell Biol. 2003 Jun 23;161(6):1067-79. doi: 10.1083/jcb.200303048. Epub 2003 Jun 16.
5
Mitotic phosphorylation of VCIP135 blocks p97ATPase-mediated Golgi membrane fusion.
Biochem Biophys Res Commun. 2013 Apr 5;433(2):237-42. doi: 10.1016/j.bbrc.2013.02.090. Epub 2013 Mar 7.
6
Phosphorylation of p37 is important for Golgi disassembly at mitosis.
Biochem Biophys Res Commun. 2010 Nov 5;402(1):37-41. doi: 10.1016/j.bbrc.2010.09.097. Epub 2010 Sep 26.
7
Polo-like kinase is required for the fragmentation of pericentriolar Golgi stacks during mitosis.
Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9128-32. doi: 10.1073/pnas.161283998. Epub 2001 Jul 10.
8
Golgi cisternal unstacking stimulates COPI vesicle budding and protein transport.
PLoS One. 2008 Feb 20;3(2):e1647. doi: 10.1371/journal.pone.0001647.
10
A direct role for GRASP65 as a mitotically regulated Golgi stacking factor.
EMBO J. 2003 Jul 1;22(13):3279-90. doi: 10.1093/emboj/cdg317.

引用本文的文献

1
The host-targeting compound peruvoside has a broad-spectrum antiviral activity against positive-sense RNA viruses.
Acta Pharm Sin B. 2023 May;13(5):2039-2055. doi: 10.1016/j.apsb.2023.03.015. Epub 2023 Mar 18.
2
A non-canonical role of ATG8 in Golgi recovery from heat stress in plants.
Nat Plants. 2023 May;9(5):749-765. doi: 10.1038/s41477-023-01398-w. Epub 2023 Apr 20.
3
The baseless mutant links protein phosphatase 2A with basal cell identity in the brown alga Ectocarpus.
Development. 2023 Feb 15;150(4). doi: 10.1242/dev.201283. Epub 2023 Feb 14.
4
Common Markers and Small Molecule Inhibitors in Golgi Studies.
Methods Mol Biol. 2023;2557:453-493. doi: 10.1007/978-1-0716-2639-9_27.
5
Quantitative Proteomics Analysis of Purified Rat Liver Golgi.
Methods Mol Biol. 2023;2557:417-430. doi: 10.1007/978-1-0716-2639-9_25.
6
Common Assays in Mammalian Golgi Studies.
Methods Mol Biol. 2023;2557:303-332. doi: 10.1007/978-1-0716-2639-9_20.
7
Mitotic phosphorylation inhibits the Golgi mannosidase MAN1A1.
Cell Rep. 2022 Nov 22;41(8):111679. doi: 10.1016/j.celrep.2022.111679.
8
Adaptation of the Golgi Apparatus in Cancer Cell Invasion and Metastasis.
Front Cell Dev Biol. 2021 Dec 10;9:806482. doi: 10.3389/fcell.2021.806482. eCollection 2021.
9
Valosin-Containing Protein (VCP)/p97: A Prognostic Biomarker and Therapeutic Target in Cancer.
Int J Mol Sci. 2021 Sep 21;22(18):10177. doi: 10.3390/ijms221810177.
10
Membrane and organelle dynamics during cell division.
Nat Rev Mol Cell Biol. 2020 Mar;21(3):151-166. doi: 10.1038/s41580-019-0208-1. Epub 2020 Feb 7.

本文引用的文献

1
Active ADP-ribosylation factor-1 (ARF1) is required for mitotic Golgi fragmentation.
J Biol Chem. 2007 Jul 27;282(30):21829-37. doi: 10.1074/jbc.M611716200. Epub 2007 Jun 11.
2
Golgi maturation visualized in living yeast.
Nature. 2006 Jun 22;441(7096):1002-6. doi: 10.1038/nature04717. Epub 2006 May 14.
3
Live imaging of yeast Golgi cisternal maturation.
Nature. 2006 Jun 22;441(7096):1007-10. doi: 10.1038/nature04737. Epub 2006 May 14.
4
Dynamic transport of SNARE proteins in the Golgi apparatus.
Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14647-52. doi: 10.1073/pnas.0507394102. Epub 2005 Sep 30.
5
Golgin tethers define subpopulations of COPI vesicles.
Science. 2005 Feb 18;307(5712):1095-8. doi: 10.1126/science.1108061.
6
Mapping the functional domains of the Golgi stacking factor GRASP65.
J Biol Chem. 2005 Feb 11;280(6):4921-8. doi: 10.1074/jbc.M412407200. Epub 2004 Dec 2.
8
COP and clathrin-coated vesicle budding: different pathways, common approaches.
Curr Opin Cell Biol. 2004 Aug;16(4):379-91. doi: 10.1016/j.ceb.2004.06.009.
10
VCIP135 acts as a deubiquitinating enzyme during p97-p47-mediated reassembly of mitotic Golgi fragments.
J Cell Biol. 2004 Mar 29;164(7):973-8. doi: 10.1083/jcb.200401010. Epub 2004 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验