Tang Danming, Mar Kari, Warren Graham, Wang Yanzhuang
Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA.
J Biol Chem. 2008 Mar 7;283(10):6085-94. doi: 10.1074/jbc.M707715200. Epub 2007 Dec 21.
In mammalian cells, flat Golgi cisternae closely arrange together to form stacks. During mitosis, the stacked structure undergoes a continuous fragmentation process. The generated mitotic Golgi fragments are distributed into the daughter cells, where they are reassembled into new Golgi stacks. In this study, an in vitro assay has been developed using purified proteins and Golgi membranes to reconstitute the Golgi disassembly and reassembly processes. This technique provides a useful tool to delineate the mechanisms underlying the morphological change. There are two processes during Golgi disassembly: unstacking and vesiculation. Unstacking is mediated by two mitotic kinases, cdc2 and plk, which phosphorylate the Golgi stacking protein GRASP65 and thus disrupt the oligomer of this protein. Vesiculation is mediated by the COPI budding machinery ARF1 and the coatomer complex. When treated with a combination of purified kinases, ARF1 and coatomer, the Golgi membranes were completely fragmented into vesicles. After mitosis, there are also two processes in Golgi reassembly: formation of single cisternae by membrane fusion, and restacking. Cisternal membrane fusion requires two AAA ATPases, p97 and NSF (N-ethylmaleimide-sensitive fusion protein), each of which functions together with specific adaptor proteins. Restacking of the newly formed Golgi cisternae requires dephosphorylation of Golgi stacking proteins by the protein phosphatase PP2A. This systematic study revealed the minimal machinery that controls the mitotic Golgi disassembly and reassembly processes.
在哺乳动物细胞中,扁平的高尔基体潴泡紧密排列在一起形成堆叠结构。在有丝分裂期间,堆叠结构会经历持续的碎片化过程。产生的有丝分裂高尔基体片段被分配到子细胞中,在那里它们重新组装成新的高尔基体堆叠。在这项研究中,利用纯化的蛋白质和高尔基体膜开发了一种体外测定方法,以重建高尔基体的解体和重新组装过程。这项技术为阐明形态变化背后的机制提供了一个有用的工具。高尔基体解体过程中有两个步骤:解堆叠和囊泡化。解堆叠由两种有丝分裂激酶cdc2和plk介导,它们使高尔基体堆叠蛋白GRASP65磷酸化,从而破坏该蛋白的寡聚体。囊泡化由COPI出芽机制ARF1和外被体复合物介导。当用纯化的激酶、ARF1和外被体的组合处理时,高尔基体膜完全碎片化形成囊泡。有丝分裂后,高尔基体重新组装也有两个步骤:通过膜融合形成单个潴泡,以及重新堆叠。潴泡膜融合需要两种AAA型ATP酶,p97和NSF(N - 乙基马来酰亚胺敏感融合蛋白),它们各自与特定的衔接蛋白共同发挥作用。新形成的高尔基体潴泡的重新堆叠需要蛋白磷酸酶PP2A使高尔基体堆叠蛋白去磷酸化。这项系统性研究揭示了控制有丝分裂高尔基体解体和重新组装过程的最小机制。