Holmes W M, Maclellan S, Condon B, Dufès C, Evans T R J, Uchegbu I F, Schätzlein A G
Division of Clinical Neuroscience, University of Glasgow, Glasgow, UK.
Phys Med Biol. 2008 Jan 21;53(2):505-13. doi: 10.1088/0031-9155/53/2/015. Epub 2007 Dec 28.
The investigation of mouse flank tumours by magnetic resonance imaging (MRI) is limited by the achievable spatial resolution, which is generally limited by the critical problem of signal-to-noise ratio. Sensitivity was improved by using an optimized solenoid RF micro-coil, built into the animal cradle. This simple design did not require extensive RF engineering expertise to construct, yet allowed high-resolution 3D isotropic imaging at 60 x 60 x 60 microm(3) for a flank tumour in vivo, revealing the heterogeneous internal structure of the tumour. It also allowed dynamic contrast enhanced (DCE) experiments and angiography (MRA) to be performed at 100 x 100 x 100 microm(3) resolution. The DCE experiments provided an excellent example of the diffusive spreading of contrast agent into less vascularized tumour tissue. This work is the first step in using high-resolution 3D isotropic MR to study transport in mouse flank tumours.
通过磁共振成像(MRI)对小鼠侧腹肿瘤进行的研究受到可实现的空间分辨率的限制,而这通常又受到信噪比这一关键问题的限制。通过使用内置在动物摇篮中的优化螺线管射频微线圈提高了灵敏度。这种简单的设计在构建时不需要广泛的射频工程专业知识,但却能在体内对侧腹肿瘤进行60×60×60微米³的高分辨率三维各向同性成像,揭示肿瘤内部的异质结构。它还能以100×100×100微米³的分辨率进行动态对比增强(DCE)实验和血管造影(MRA)。DCE实验为造影剂扩散到血管化程度较低的肿瘤组织中提供了一个很好的例子。这项工作是使用高分辨率三维各向同性磁共振研究小鼠侧腹肿瘤内物质传输的第一步。