Chiribau Calin B, Cheng Lihong, Cucoranu Ioan C, Yu Yong-Shen, Clempus Roza E, Sorescu Dan
Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322, USA.
J Biol Chem. 2008 Mar 28;283(13):8211-7. doi: 10.1074/jbc.M710610200. Epub 2008 Jan 14.
Human cardiac fibroblasts are protected from oxidative stress triggered by inflammation after myocardial injury (Li, P. F., Dietz, R., and von Harsdorf, R. (1999) FEBS Lett. 448, 206-210) by expressing potent antioxidant defenses such as superoxide dismutases, catalases, glutathione-peroxidases, and peroxiredoxins. Recently the transcription factor FOXO3A has been shown to increase resistance to oxidative stress by up-regulation of mitochondrial superoxide dismutase and peroxisomal catalase (Kops, G. J., Dansen, T. B., Polderman, P. E., Saarloos, I., Wirtz, K. W., Coffer, P. J., Huang, T. T., Bos, J. L., Medema, R. H., and Burgering, B. M. (2002) Nature 419, 316-321; Nemoto, S., and Finkel, T. (2002) Science 295, 2450-2452). We hypothesized that FOXO3A also regulates the expression of Prx III, the mitochondrial peroxiredoxin, in human cardiac fibroblasts. We found that depletion of FOXO3A leads to a dramatic reduction of Prx III mRNA and protein in serum-deprived human cardiac fibroblasts. These data suggest that endogenous FOXO3A is necessary for base-line expression of Prx III. Next, we identified two putative FOXO3A DNA binding sites in Prx III promoter at -267 and -244 nucleotides relative to the start codon. We demonstrated that both sequences are required for binding of endogenous FOXO3A to the Prx III promoter by performing electromobility shift assays and chromatin immunoprecipitation assays. Inhibition of endogenous FOXO3A by insulin growth factor 1 prevented binding of FOXO3A to Prx III promoter. In contrast, overexpression of FOXO3A increased Prx III promoter activity. Furthermore, depletion of Prx III was associated with enhanced apoptosis and oxidative stress after serum deprivation. We conclude that FOXO3A mediates Prx III expression, and this may play a critical role in the resistance to oxidative stress in cardiac fibroblasts.
人类心脏成纤维细胞在心肌损伤后可通过表达超氧化物歧化酶、过氧化氢酶、谷胱甘肽过氧化物酶和过氧化物还原酶等强大的抗氧化防御机制,免受炎症引发的氧化应激影响(Li, P. F., Dietz, R., and von Harsdorf, R. (1999) FEBS Lett. 448, 206 - 210)。最近研究表明,转录因子FOXO3A可通过上调线粒体超氧化物歧化酶和过氧化物酶体过氧化氢酶,增强对氧化应激的抗性(Kops, G. J., Dansen, T. B., Polderman, P. E., Saarloos, I., Wirtz, K. W., Coffer, P. J., Huang, T. T., Bos, J. L., Medema, R. H., and Burgering, B. M. (2002) Nature 419, 316 - 321; Nemoto, S., and Finkel, T. (2002) Science 295, 2450 - 2452)。我们推测FOXO3A也调控人类心脏成纤维细胞中线粒体过氧化物还原酶Prx III的表达。我们发现,在血清饥饿的人类心脏成纤维细胞中,FOXO3A缺失会导致Prx III mRNA和蛋白显著减少。这些数据表明,内源性FOXO3A对于Prx III的基线表达是必需的。接下来,我们在Prx III启动子中相对于起始密码子的 - 267和 - 244核苷酸处鉴定出两个假定的FOXO3A DNA结合位点。我们通过进行电泳迁移率变动分析和染色质免疫沉淀分析证明,这两个序列都是内源性FOXO3A与Prx III启动子结合所必需的。胰岛素生长因子1对内源性FOXO3A的抑制作用可阻止FOXO3A与Prx III启动子的结合。相反,FOXO3A的过表达可增加Prx III启动子活性。此外,血清饥饿后Prx III的缺失与细胞凋亡增加和氧化应激增强有关。我们得出结论,FOXO3A介导Prx III的表达,这可能在心脏成纤维细胞对氧化应激的抗性中起关键作用。