Suppr超能文献

基于支持向量机方法和GRIND描述符相结合的hERG分类模型。

hERG classification model based on a combination of support vector machine method and GRIND descriptors.

作者信息

Li Qiyuan, Jørgensen Flemming Steen, Oprea Tudor, Brunak Søren, Taboureau Olivier

机构信息

Center for Biological Sequence Analysis, Biocentrum-DTU, Technical University of Denmark, Building 208, DK-2800 Lyngby, Denmark.

出版信息

Mol Pharm. 2008 Jan-Feb;5(1):117-27. doi: 10.1021/mp700124e. Epub 2008 Jan 16.

Abstract

The human Ether-a-go-go Related Gene (hERG) potassium channel is one of the major critical factors associated with QT interval prolongation and development of arrhythmia called Torsades de Pointes (TdP). It has become a growing concern of both regulatory agencies and pharmaceutical industries who invest substantial effort in the assessment of cardiac toxicity of drugs. The development of in silico tools to filter out potential hERG channel inhibitors in early stages of the drug discovery process is of considerable interest. Here, we describe binary classification models based on a large and diverse library of 495 compounds. The models combine pharmacophore-based GRIND descriptors with a support vector machine (SVM) classifier in order to discriminate between hERG blockers and nonblockers. Our models were applied at different thresholds from 1 to 40 microm and achieved an overall accuracy up to 94% with a Matthews coefficient correlation (MCC) of 0.86 ( F-measure of 0.90 for blockers and 0.95 for nonblockers). The model at a 40 microm threshold showed the best performance and was validated internally (MCC of 0.40 and F-measure of 0.57 for blockers and 0.81 for nonblockers, using a leave-one-out cross-validation). On an external set of 66 compounds, 72% of the set was correctly predicted ( F-measure of 0.86 and 0.34 for blockers and nonblockers, respectively). Finally, the model was also tested on a large set of hERG bioassay data recently made publicly available on PubChem ( http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=376) to achieve about 73% accuracy ( F-measure of 0.30 and 0.83 for blockers and nonblockers, respectively). Even if there is still some limitation in the assessment of hERG blockers, the performance of our model shows an improvement between 10% and 20% in the prediction of blockers compared to other methods, which can be useful in the filtering of potential hERG channel inhibitors.

摘要

人类醚 - 去极化相关基因(hERG)钾通道是与QT间期延长及称为尖端扭转型室性心动过速(TdP)的心律失常发生相关的主要关键因素之一。它已成为监管机构和制药行业日益关注的问题,这些机构和行业在评估药物心脏毒性方面投入了大量精力。开发计算机工具以在药物发现过程的早期阶段筛选出潜在的hERG通道抑制剂具有相当大的吸引力。在此,我们描述了基于495种化合物的大型多样化库的二元分类模型。这些模型将基于药效团的GRIND描述符与支持向量机(SVM)分类器相结合,以区分hERG阻滞剂和非阻滞剂。我们的模型在1至40微摩尔的不同阈值下应用,总体准确率高达94%,马修斯系数相关性(MCC)为0.86(阻滞剂的F值为0.90,非阻滞剂的F值为0.95)。40微摩尔阈值的模型表现最佳,并进行了内部验证(使用留一法交叉验证,阻滞剂MCC为0.40,F值为0.57,非阻滞剂MCC为0.81)。在一组66种化合物的外部数据集上,72%的数据集被正确预测(阻滞剂的F值为0.86,非阻滞剂的F值为0.34)。最后,该模型还在最近在PubChem(http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid = 376)上公开的大量hERG生物测定数据上进行了测试,准确率约为73%(阻滞剂的F值为0.30,非阻滞剂的F值为0.83)。即使在评估hERG阻滞剂方面仍存在一些局限性,但与其他方法相比,我们模型在预测阻滞剂方面的性能提高了10%至20%,这在筛选潜在的hERG通道抑制剂方面可能会很有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验