Suppr超能文献

单神经元和网络水平上增益调制的机制。

Mechanism of gain modulation at single neuron and network levels.

作者信息

Brozović M, Abbott L F, Andersen R A

机构信息

Division of Biology, Mail Code 216-76, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

J Comput Neurosci. 2008 Aug;25(1):158-68. doi: 10.1007/s10827-007-0070-6. Epub 2008 Jan 23.

Abstract

Gain modulation, in which the sensitivity of a neural response to one input is modified by a second input, is studied at single-neuron and network levels. At the single neuron level, gain modulation can arise if the two inputs are subject to a direct multiplicative interaction. Alternatively, these inputs can be summed in a linear manner by the neuron and gain modulation can arise, instead, from a nonlinear input-output relationship. We derive a mathematical constraint that can distinguish these two mechanisms even though they can look very similar, provided sufficient data of the appropriate type are available. Previously, it has been shown in coordinate transformation studies that artificial neurons with sigmoid transfer functions can acquire a nonlinear additive form of gain modulation through learning-driven adjustment of synaptic weights. We use the constraint derived for single-neuron studies to compare responses in this network with those of another network model based on a biologically inspired transfer function that can support approximately multiplicative interactions.

摘要

增益调制是指神经对一个输入的反应灵敏度被另一个输入所改变,目前在单神经元和网络层面都有相关研究。在单神经元层面,如果两个输入受到直接的乘法相互作用,就会产生增益调制。另外,这些输入可以由神经元以线性方式求和,增益调制则可能源于非线性的输入-输出关系。我们推导了一个数学约束条件,即使这两种机制看起来非常相似,只要有足够的合适类型的数据,就能区分它们。此前,在坐标变换研究中已经表明,具有Sigmoid传递函数的人工神经元可以通过学习驱动的突触权重调整来获得非线性加法形式的增益调制。我们使用为单神经元研究推导的约束条件,将这个网络中的反应与另一个基于生物启发传递函数的网络模型的反应进行比较,该传递函数可以支持近似乘法相互作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验