Orcutt Beth, Samarkin Vladimir, Boetius Antje, Joye Samantha
Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA.
Environ Microbiol. 2008 May;10(5):1108-17. doi: 10.1111/j.1462-2920.2007.01526.x. Epub 2008 Jan 23.
The anaerobic oxidation of methane (AOM) in the marine subsurface is a significant sink for methane in the environment, yet our understanding of its regulation and dynamics is still incomplete. Relatively few groups of microorganisms consume methane in subsurface environments--namely the anaerobic methanotrophic archaea (ANME clades 1, 2 and 3), which are phylogenetically related to methanogenic archaea. Anaerobic oxidation of methane presumably proceeds via a 'reversed' methanogenic pathway. The ANME are generally associated with sulfate-reducing bacteria (SRB) and sulfate is the only documented final electron acceptor for AOM in marine sediments. Our comparative study explored the coupling of AOM with sulfate reduction (SR) and methane generation (MOG) in microbial communities from Gulf of Mexico cold seep sediments that were naturally enriched with methane and other hydrocarbons. These sediments harbour a variety of ANME clades and SRB. Following enrichment under an atmosphere of methane, AOM fuelled 50-100% of SR, even in sediment slurries containing petroleum-associated hydrocarbons and organic matter. In the presence of methane and sulfate, the investigated microbial communities produce methane at a small fraction ( approximately 10%) of the AOM rate. Anaerobic oxidation of methane, MOG and SR rates decreased significantly with decreasing concentration of methane, and in the presence of the SR inhibitor molybdate, but reacted differently to the MOG inhibitor 2-bromoethanesulfonate (BES). The addition of acetate, a possible breakdown product of petroleum in situ and a potential intermediate in AOM/SR syntrophy, did not suppress AOM activity; rather acetate stimulated microbial activity in oily sediment slurries.
海洋次表层的甲烷厌氧氧化(AOM)是环境中甲烷的一个重要汇,但我们对其调节和动态的理解仍不完整。在次表层环境中,相对较少的微生物群体会消耗甲烷——即厌氧甲烷氧化古菌(ANME进化枝1、2和3),它们在系统发育上与产甲烷古菌相关。甲烷厌氧氧化可能通过一条“反向”产甲烷途径进行。ANME通常与硫酸盐还原菌(SRB)有关,硫酸盐是海洋沉积物中AOM唯一记录在案的最终电子受体。我们的比较研究探讨了墨西哥湾冷泉沉积物中微生物群落中AOM与硫酸盐还原(SR)和甲烷生成(MOG)的耦合,这些沉积物天然富含甲烷和其他碳氢化合物。这些沉积物中含有多种ANME进化枝和SRB。在甲烷气氛下富集后,即使在含有石油相关碳氢化合物和有机物的沉积物浆液中,AOM也为50%-100%的SR提供了燃料。在有甲烷和硫酸盐存在的情况下,所研究的微生物群落产生甲烷的速率仅为AOM速率的一小部分(约10%)。甲烷厌氧氧化、MOG和SR速率随着甲烷浓度的降低而显著降低,并且在存在SR抑制剂钼酸盐的情况下也是如此,但对MOG抑制剂2-溴乙烷磺酸盐(BES)的反应不同。添加醋酸盐(石油原位可能的分解产物以及AOM/SR互营代谢中的潜在中间体)并没有抑制AOM活性;相反,醋酸盐刺激了含油沉积物浆液中的微生物活性。