González Juan R, Carrasco Josep L, Dudbridge Frank, Armengol Lluís, Estivill Xavier, Moreno Victor
Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.
Genet Epidemiol. 2008 Apr;32(3):246-54. doi: 10.1002/gepi.20299.
The assessment of the association between a candidate locus and a disease may require the assumption of an inheritance model. Most researchers select the additive model and test the association with the Cochran-Armitage trend test. This test assumes a dose-response effect with regard to the number of copies of the variant allele. However, if there is reason to expect dominance or recessiveness in the effect of the variant allele, the heterozygous genotype may be grouped with one of the two homozygous, depending on the inheritance model, and a simple test on the 2 x 2 table can be used to assess independence. When the underlying genetic model is unknown, association may be assessed using the max-statistic, which selects the largest test statistic from the dominant, recessive and additive models. The statistical significance of the max-statistic has been previously addressed using permutation or Monte Carlo simulation approaches. We aimed to provide simpler alternatives to the max-test to make it feasible in large-scale association studies. Our simulations show that this procedure has an effective number of tests of 2.2, which can be used to correct the significance level or P-values. We also derive the asymptotic distribution of max-statistic, which leads to a simple way to calculate the significance level and allows the derivation of a formula for power calculations in the design of studies that plan to use the max-statistic. A simulation study shows that the use of the max-statistic is a powerful approach that provides safeguard against model uncertainty.
评估候选基因座与疾病之间的关联可能需要假定一种遗传模型。大多数研究人员选择加性模型,并使用 Cochr an - Armitage趋势检验来检验关联性。该检验假定变异等位基因拷贝数存在剂量反应效应。然而,如果有理由预期变异等位基因的效应存在显性或隐性,杂合基因型可根据遗传模型与两种纯合基因型之一合并,并且可使用2×2表的简单检验来评估独立性。当潜在遗传模型未知时,可使用最大统计量来评估关联性,该统计量从显性、隐性和加性模型中选择最大的检验统计量。最大统计量的统计学显著性先前已使用置换或蒙特卡罗模拟方法进行了探讨。我们旨在为最大检验提供更简单的替代方法,使其在大规模关联研究中可行。我们的模拟表明,该程序的有效检验次数为2.2,可用于校正显著性水平或P值。我们还推导了最大统计量的渐近分布,这导致了一种计算显著性水平的简单方法,并允许推导在计划使用最大统计量的研究设计中进行功效计算的公式。一项模拟研究表明,使用最大统计量是一种强大的方法,可防范模型不确定性。