Suppr超能文献

基于磁共振和计算机断层扫描肾造影的肾脏功能评估:多室模型的脉冲保留方法

Functional assessment of the kidney from magnetic resonance and computed tomography renography: impulse retention approach to a multicompartment model.

作者信息

Zhang Jeff L, Rusinek Henry, Bokacheva Louisa, Lerman Lilach O, Chen Qun, Prince Chekema, Oesingmann Niels, Song Ting, Lee Vivian S

机构信息

Department of Radiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.

出版信息

Magn Reson Med. 2008 Feb;59(2):278-88. doi: 10.1002/mrm.21489.

Abstract

A three-compartment model is proposed for analyzing magnetic resonance renography (MRR) and computed tomography renography (CTR) data to derive clinically useful parameters such as glomerular filtration rate (GFR) and renal plasma flow (RPF). The model fits the convolution of the measured input and the predefined impulse retention functions to the measured tissue curves. A MRR study of 10 patients showed that relative root mean square errors by the model were significantly lower than errors for a previously reported three-compartmental model (11.6% +/- 4.9 vs 15.5% +/- 4.1; P < 0.001). GFR estimates correlated well with reference values by (99m)Tc-DTPA scintigraphy (correlation coefficient r = 0.82), and for RPF, r = 0.80. Parameter-sensitivity analysis and Monte Carlo simulation indicated that model parameters could be reliably identified. When the model was applied to CTR in five pigs, expected increases in RPF and GFR due to acetylcholine were detected with greater consistency than with the previous model. These results support the reliability and validity of the new model in computing GFR, RPF, and renal mean transit times from MR and CT data.

摘要

提出了一种三室模型,用于分析磁共振肾造影(MRR)和计算机断层扫描肾造影(CTR)数据,以得出诸如肾小球滤过率(GFR)和肾血浆流量(RPF)等临床有用参数。该模型将测量输入与预定义的脉冲保留函数的卷积拟合到测量的组织曲线。对10名患者的MRR研究表明,该模型的相对均方根误差显著低于先前报道的三室模型的误差(11.6%±4.9对15.5%±4.1;P<0.001)。GFR估计值与(99m)Tc-DTPA闪烁扫描法的参考值相关性良好(相关系数r = 0.82),对于RPF,r = 0.80。参数敏感性分析和蒙特卡罗模拟表明,可以可靠地识别模型参数。当该模型应用于5头猪的CTR时,与先前模型相比,检测到乙酰胆碱引起的RPF和GFR预期增加具有更高的一致性。这些结果支持了新模型在从MR和CT数据计算GFR、RPF和肾平均通过时间方面的可靠性和有效性。

相似文献

3
Renal function measurements from MR renography and a simplified multicompartmental model.
Am J Physiol Renal Physiol. 2007 May;292(5):F1548-59. doi: 10.1152/ajprenal.00347.2006. Epub 2007 Jan 9.
4
Estimates of glomerular filtration rate from MR renography and tracer kinetic models.
J Magn Reson Imaging. 2009 Feb;29(2):371-82. doi: 10.1002/jmri.21642.
5
Feasibility of gamma camera-based GFR measurement using renal depth evaluated by lateral scan of Tc-DTPA renography.
Ann Nucl Med. 2020 May;34(5):349-357. doi: 10.1007/s12149-020-01455-w. Epub 2020 Mar 13.
6
Angiotensin-converting enzyme inhibitor-enhanced MR renography: repeated measures of GFR and RPF in hypertensive patients.
Am J Physiol Renal Physiol. 2009 Apr;296(4):F884-91. doi: 10.1152/ajprenal.90648.2008. Epub 2009 Jan 21.
7
The Accuracy of Renal Function Measurements in Obstructive Hydronephrosis Using Dynamic Contrast-Enhanced MR Renography.
AJR Am J Roentgenol. 2019 Oct;213(4):859-866. doi: 10.2214/AJR.19.21224. Epub 2019 Jun 25.

引用本文的文献

1
Quantitative renal magnetic resonance imaging: magnetic resonance urography.
Pediatr Radiol. 2022 Feb;52(2):228-248. doi: 10.1007/s00247-021-05264-9. Epub 2022 Jan 13.
3
Noninvasive monitoring of chronic kidney disease using pH and perfusion imaging.
Sci Adv. 2019 Aug 14;5(8):eaaw8357. doi: 10.1126/sciadv.aaw8357. eCollection 2019 Aug.
5
A modified two-compartment model for measurement of renal function using dynamic contrast-enhanced computed tomography.
PLoS One. 2019 Jul 10;14(7):e0219605. doi: 10.1371/journal.pone.0219605. eCollection 2019.
7
Exercise-induced calf muscle hyperemia: quantitative mapping with low-dose dynamic contrast enhanced magnetic resonance imaging.
Am J Physiol Heart Circ Physiol. 2019 Jan 1;316(1):H201-H211. doi: 10.1152/ajpheart.00537.2018. Epub 2018 Nov 2.
8
Quantitative characterization of glomerular fibrosis with magnetic resonance imaging: a feasibility study in a rat glomerulonephritis model.
Am J Physiol Renal Physiol. 2018 May 1;314(5):F747-F752. doi: 10.1152/ajprenal.00529.2017. Epub 2018 Jan 3.
9
REnal Flow and Microstructure AnisotroPy (REFMAP) MRI in Normal and Peritumoral Renal Tissue.
J Magn Reson Imaging. 2018 Jul;48(1):188-197. doi: 10.1002/jmri.25940. Epub 2018 Jan 13.
10
Measurement of Murine Single-Kidney Glomerular Filtration Rate Using Dynamic Contrast-Enhanced MRI.
Magn Reson Med. 2018 Jun;79(6):2935-2943. doi: 10.1002/mrm.26955. Epub 2017 Oct 16.

本文引用的文献

1
Performance of an automated segmentation algorithm for 3D MR renography.
Magn Reson Med. 2007 Jun;57(6):1159-67. doi: 10.1002/mrm.21240.
2
Quantitative determination of Gd-DTPA concentration in T1-weighted MR renography studies.
Magn Reson Med. 2007 Jun;57(6):1012-8. doi: 10.1002/mrm.21169.
4
Nephrogenic systemic fibrosis: risk factors and incidence estimation.
Radiology. 2007 Apr;243(1):148-57. doi: 10.1148/radiol.2431062144. Epub 2007 Jan 31.
5
Renal function measurements from MR renography and a simplified multicompartmental model.
Am J Physiol Renal Physiol. 2007 May;292(5):F1548-59. doi: 10.1152/ajprenal.00347.2006. Epub 2007 Jan 9.
7
A biphasic parameter estimation method for quantitative analysis of dynamic renal scintigraphic data.
Phys Med Biol. 2006 Jun 7;51(11):2857-70. doi: 10.1088/0031-9155/51/11/012. Epub 2006 May 24.
8
Functional MRI of the kidney: tools for translational studies of pathophysiology of renal disease.
Am J Physiol Renal Physiol. 2006 May;290(5):F958-74. doi: 10.1152/ajprenal.00114.2005.
9
Gadolinium--a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis?
Nephrol Dial Transplant. 2006 Apr;21(4):1104-8. doi: 10.1093/ndt/gfk062. Epub 2006 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验