Suppr超能文献

化学势梯度下混合导体的电化学阻抗谱:以Pt|SDC|BSCF为例

Electrochemical impedance spectroscopy of mixed conductors under a chemical potential gradient: a case study of Pt|SDC|BSCF.

作者信息

Lai Wei, Haile Sossina M

机构信息

Materials Science, California Institute of Technology, Pasadena, California 91125, USA.

出版信息

Phys Chem Chem Phys. 2008 Feb 14;10(6):865-83. doi: 10.1039/b712473b. Epub 2007 Dec 5.

Abstract

The AC impedance response of mixed ionic and electronic conductors (MIECs) exposed to a chemical potential gradient is derived from first principles. In such a system, the chemical potential gradient induces a gradient in the carrier concentration. For the particular system considered, 15% samarium doped ceria (SDC15) with Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-delta) (BSCF) and Pt electrodes, the oxygen vacancy concentration is a constant under the experimental conditions and it is the electron concentration that varies. The resulting equations are mapped to an equivalent circuit that bears some resemblance to recently discussed equivalent circuit models for MIECs under uniform chemical potential conditions, but differs in that active elements, specifically, voltage-controlled current sources, occur. It is shown that from a combination of open circuit voltage measurements and AC impedance spectroscopy, it is possible to use this model to determine the oxygen partial pressure drop that occurs between the gas phase in the electrode chambers and the electrode|electrolyte interface, as well as the interfacial polarization resistance. As discussed in detail, this resistance corresponds to the slope of the interfacial polarization curve. Measurements were carried out at temperatures between 550 and 650 degrees C and oxygen partial pressure at the Pt anode ranging from 10(-29) to 10(-24) atm (attained using H(2)/H(2)O/Ar mixtures), while the cathode was exposed to either synthetic air or neat oxygen. The oxygen partial pressure drop at the anode was typically about five orders of magnitude, whereas that at the cathode was about 0.1 atm for measurements using air. Accordingly, the poor activity of the anode is responsible for a loss in open circuit voltage of about 0.22 V, whereas the cathode is responsible for only about 0.01 V, reflecting the high activity of BSCF for oxygen electro-reduction. The interfacial polarization resistance at the anode displayed dependences on oxygen partial pressure and on temperature that mimic those of the electronic resistivity of SDC15. This behavior is consistent with hydrogen electro-oxidation occurring directly on the ceria surface and electron migration being the rate-limiting step. However, the equivalent resistance implied by the oxygen partial pressure drop across the anode displayed slightly different behavior, possibly indicative of a more complex reaction pathway.

摘要

从第一性原理推导了暴露于化学势梯度下的混合离子电子导体(MIECs)的交流阻抗响应。在这样的系统中,化学势梯度会引起载流子浓度的梯度。对于所考虑的特定系统,即具有Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3 - δ)(BSCF)和Pt电极的15%钐掺杂二氧化铈(SDC15),在实验条件下氧空位浓度是恒定的,变化的是电子浓度。所得方程被映射到一个等效电路,该等效电路与最近讨论的均匀化学势条件下MIECs的等效电路模型有一些相似之处,但不同之处在于出现了有源元件,具体来说是压控电流源。结果表明,通过开路电压测量和交流阻抗谱的结合,利用该模型可以确定电极腔室气相与电极|电解质界面之间发生的氧分压降以及界面极化电阻。如详细讨论的那样,该电阻对应于界面极化曲线的斜率。测量在550至650摄氏度的温度下进行,Pt阳极处的氧分压范围为10^(-29)至10^(-24) atm(使用H(2)/H(2)O/Ar混合物获得),而阴极暴露于合成空气或纯氧中。阳极处的氧分压降通常约为五个数量级,而使用空气进行测量时阴极处的氧分压降约为0.1 atm。因此,阳极活性差导致开路电压损失约0.22 V,而阴极仅导致约0.01 V,这反映了BSCF对氧电还原的高活性。阳极处的界面极化电阻显示出对氧分压和温度的依赖性,与SDC15的电子电阻率的依赖性相似。这种行为与直接在二氧化铈表面发生的氢电氧化以及电子迁移是速率限制步骤一致。然而,阳极上氧分压降所隐含的等效电阻表现出略有不同的行为,这可能表明反应途径更为复杂。

相似文献

1
Electrochemical impedance spectroscopy of mixed conductors under a chemical potential gradient: a case study of Pt|SDC|BSCF.
Phys Chem Chem Phys. 2008 Feb 14;10(6):865-83. doi: 10.1039/b712473b. Epub 2007 Dec 5.
2
The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell.
Bioelectrochemistry. 2008 Apr;72(2):149-54. doi: 10.1016/j.bioelechem.2008.01.004. Epub 2008 Jan 18.
3
Transport effects in the oxygen reduction reaction on nanostructured, planar glassy carbon supported Pt/GC model electrodes.
Phys Chem Chem Phys. 2008 Apr 14;10(14):1931-43. doi: 10.1039/b719775f. Epub 2008 Feb 26.
4
Kinetic studies of adsorbed CO electrochemical oxidation on Pt(335) at full and sub-saturation coverages.
Phys Chem Chem Phys. 2008 Jul 7;10(25):3655-61. doi: 10.1039/b804507k. Epub 2008 May 27.
5
Structural, compositional and electrochemical characterization of Pt-Co oxygen-reduction catalysts.
Chemphyschem. 2010 May 17;11(7):1468-75. doi: 10.1002/cphc.200900924.
6
Solid oxide fuel cells with both high voltage and power output by utilizing beneficial interfacial reaction.
Phys Chem Chem Phys. 2012 Sep 21;14(35):12173-81. doi: 10.1039/c2cp41166k. Epub 2012 Aug 7.
7
Development of high performance of Co/Fe/N/CNT nanocatalyst for oxygen reduction in microbial fuel cells.
Talanta. 2010 Apr 15;81(1-2):444-8. doi: 10.1016/j.talanta.2009.12.022. Epub 2009 Dec 21.
9
Impedance spectroscopy of reduced monoclinic zirconia.
Phys Chem Chem Phys. 2006 Oct 14;8(38):4476-83. doi: 10.1039/b604396h. Epub 2006 Aug 24.
10
Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT.
Phys Chem Chem Phys. 2008 Jul 7;10(25):3722-30. doi: 10.1039/b803956a. Epub 2008 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验