Postlethwaite Claire M, Silber Mary
Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov;76(5 Pt 2):056214. doi: 10.1103/PhysRevE.76.056214. Epub 2007 Nov 27.
For many years it was believed that an unstable periodic orbit with an odd number of real Floquet multipliers greater than unity cannot be stabilized by the time-delayed feedback control mechanism of Pyragas. A recent paper by Fiedler et al. Phys. Rev. Lett. 98, 114101 (2007) uses the normal form of a subcritical Hopf bifurcation to give a counterexample to this theorem. Using the Lorenz equations as an example, we demonstrate that the stabilization mechanism identified by Fiedler et al. for the Hopf normal form can also apply to unstable periodic orbits created by subcritical Hopf bifurcations in higher-dimensional dynamical systems. Our analysis focuses on a particular codimension-two bifurcation that captures the stabilization mechanism in the Hopf normal form example, and we show that the same codimension-two bifurcation is present in the Lorenz equations with appropriately chosen Pyragas-type time-delayed feedback. This example suggests a possible strategy for choosing the feedback gain matrix in Pyragas control of unstable periodic orbits that arise from a subcritical Hopf bifurcation of a stable equilibrium. In particular, our choice of feedback gain matrix is informed by the Fiedler et al. example, and it works over a broad range of parameters, despite the fact that a center-manifold reduction of the higher-dimensional problem does not lead to their model problem.
多年来,人们一直认为,具有大于1的奇数个实弗洛凯乘数的不稳定周期轨道无法通过皮拉加斯的延时反馈控制机制实现稳定。菲德勒等人发表在《物理评论快报》98, 114101 (2007)上的一篇近期论文,利用亚临界霍普夫分岔的范式给出了该定理的一个反例。以洛伦兹方程为例,我们证明了菲德勒等人在霍普夫范式中确定的稳定机制,也适用于高维动力系统中亚临界霍普夫分岔产生的不稳定周期轨道。我们的分析聚焦于一个特定的余维二分岔,它捕捉了霍普夫范式例子中的稳定机制,并且我们表明,在适当选择皮拉加斯型延时反馈的情况下,洛伦兹方程中也存在相同的余维二分岔。这个例子为皮拉加斯控制由稳定平衡点的亚临界霍普夫分岔产生的不稳定周期轨道时选择反馈增益矩阵提供了一种可能的策略。特别是,我们对反馈增益矩阵的选择参考了菲德勒等人的例子,并且它在广泛的参数范围内都有效,尽管高维问题的中心流形约化并没有得到他们的模型问题。