Gobeaux F, Mosser G, Anglo A, Panine P, Davidson P, Giraud-Guille M-M, Belamie E
Chimie de la Matière Condensée, UMR 7574 CNRS-Université Pierre et Marie Curie, ENSCP-Ecole Pratique des Hautes Etudes, 12 rue Cuvier, 75005 Paris, France.
J Mol Biol. 2008 Mar 7;376(5):1509-22. doi: 10.1016/j.jmb.2007.12.047. Epub 2008 Jan 3.
Fibrillogenesis, the formation of collagen fibrils, is a key factor in connective tissue morphogenesis. To understand to what extent cells influence this process, we systematically studied the physicochemistry of the self-assembly of type I collagen molecules into fibrils in vitro. We report that fibrillogenesis in solutions of type I collagen, in a high concentration range close to that of living tissues (40-300 mg/ml), yields strong gels over wide pH and ionic strength ranges. Structures of gels were described by combining microscopic observations (transmission electron microscopy) with small- and wide-angle X-ray scattering analysis, and the influence of concentration, pH, and ionic strength on the fibril size and organization was evaluated. The typical cross-striated pattern and the corresponding small-angle X-ray scattering 67-nm diffraction peaks were visible in all conditions in the pH 6 to pH 12 range. In reference conditions (pH 7.4, ionic strength=150 mM, 20 degrees C), collagen concentration greatly influences the overall macroscopic structure of the resultant fibrillar gels, as well as the morphology and structure of the fibrils themselves. At a given collagen concentration, increasing the ionic strength from 24 to 261 mM produces larger fibrils until the system becomes biphasic. We also show that fibrils can form in acidic medium (pH approximately 2.5) at very high collagen concentrations, beyond 150 mg/ml, which suggests a possible cholesteric-to-smectic phase transition. This set of data demonstrates how simple physicochemical parameters determine the molecular organization of collagen. Such an in vitro model allows us to study the intricate process of fibrillogenesis in conditions of molecular packing close to that which occurs in biological tissue morphogenesis.
原纤维形成,即胶原纤维的形成,是结缔组织形态发生的关键因素。为了解细胞在多大程度上影响这一过程,我们系统地研究了I型胶原分子在体外自组装成纤维的物理化学过程。我们报告称,在I型胶原溶液中,在接近活组织浓度的高浓度范围内(40 - 300 mg/ml),在较宽的pH和离子强度范围内可形成强凝胶。通过将显微镜观察(透射电子显微镜)与小角和广角X射线散射分析相结合来描述凝胶结构,并评估浓度、pH和离子强度对纤维尺寸和组织的影响。在pH 6至pH 12范围内的所有条件下,均可观察到典型的横纹图案和相应的小角X射线散射67 nm衍射峰。在参考条件下(pH 7.4,离子强度 = 150 mM,20℃),胶原浓度极大地影响了所得纤维状凝胶的整体宏观结构以及纤维本身的形态和结构。在给定的胶原浓度下,将离子强度从24 mM增加到261 mM会产生更大的纤维,直到系统变为双相。我们还表明,在非常高的胶原浓度(超过150 mg/ml)下,纤维可在酸性介质(pH约2.5)中形成,这表明可能存在胆甾相到近晶相的转变。这组数据证明了简单的物理化学参数如何决定胶原的分子组织。这样一个体外模型使我们能够在接近生物组织形态发生过程中发生的分子堆积条件下研究原纤维形成的复杂过程。