Shih Arthur Chun-Chieh, Liao Hong-Yuan Mark, Lu Chun-Shien
Inst. of Inf. Sci., Acad. Sinica, Taipei, Taiwan.
IEEE Trans Image Process. 2003;12(4):466-76. doi: 10.1109/TIP.2003.809017.
In this paper, we propose an iterated two-band filtering method to solve the selective image smoothing problem. We prove that a discrete computation step in an iterated nonlinear diffusion-based filtering algorithm is equivalent to a sequence of operations, including decomposition, regularization, and then reconstruction, in the proposed two-band filtering scheme. To correctly separate the high frequency components from the low frequency ones in the decomposition process, we adopt a dyadic wavelet-based approximation scheme. In the regularization process, we use a diffusivity function as a guide to retain useful data and suppress noises. Finally, the signal of the next stage, which is a "smoother" version of the signal at the previous stage, can be computed by reconstructing the decomposed low frequency component and the regularized high frequency component. Based on the proposed scheme, the smoothing operation can be applied to the correct targets. Experimental results show that our new approach is really efficient in noise removing.
在本文中,我们提出了一种迭代双波段滤波方法来解决选择性图像平滑问题。我们证明,基于迭代非线性扩散的滤波算法中的离散计算步骤等同于所提出的双波段滤波方案中的一系列操作,包括分解、正则化,然后重建。为了在分解过程中正确地将高频分量与低频分量分离,我们采用基于二进小波的近似方案。在正则化过程中,我们使用扩散函数作为指导来保留有用数据并抑制噪声。最后,通过重建分解后的低频分量和正则化后的高频分量,可以计算出下一阶段的信号,它是上一阶段信号的“更平滑”版本。基于所提出的方案,平滑操作可以应用于正确的目标。实验结果表明,我们的新方法在去除噪声方面非常有效。