Lee Chung-Kyung, Cheong Hae-Kap, Ryu Kyoung-Seok, Lee Jae Il, Lee Weontae, Jeon Young Ho, Cheong Chaejoon
The Magnetic Resonance Team, Korea Basic Science Institute, Ochang, Chungbuk 363-883, Korea.
Proteins. 2008 Aug;72(2):613-24. doi: 10.1002/prot.21952.
Acetyl-CoA carboxylase (ACC) catalyzes the first step in fatty acid biosynthesis: the synthesis of malonyl-CoA from acetyl-CoA. As essential regulators of fatty acid biosynthesis and metabolism, ACCs are regarded as therapeutic targets for the treatment of metabolic diseases such as obesity. In ACC, the biotinoyl domain performs a critical function by transferring an activated carboxyl group from the biotin carboxylase domain to the carboxyl transferase domain, followed by carboxyl transfer to malonyl-CoA. Despite the intensive research on this enzyme, only the bacterial and yeast ACC structures are currently available. To explore the mechanism of ACC holoenzyme function, we determined the structure of the biotinoyl domain of human ACC2 and analyzed its characteristics and interaction with the biotin ligase, BirA using NMR spectroscopy. The 3D structure of the hACC2 biotinoyl domain has a similar folding topology to the earlier determined domains from E. coli and P. shermanii. However, the local structures near the biotinylation sites have notable differences that include the geometry of the consensus "Met-Lys-Met" (MKM) motif and the absence of "thumb" structure in the hACC2 biotinoyl domain. Observations of the NMR signals upon the biotinylation indicate that the biotin group of hACC2 does not affect the structure of the biotinoyl domain, while the biotin group for E. coli ACC interacts directly with the thumb residues that are not present in the hACC2 structure. These results imply that, in the E. coli ACC reaction, the biotin moiety carrying the carboxyl group from BC to CT can pause at the thumb of the BCCP domain. The human biotinoyl domain, however, lacks the thumb structure and does not have additional noncovalent interactions with the biotin moiety; thus, the flexible motion of the biotinylated lysine residue must underlie the "swinging arm" motion. The chemical shift perturbation and the cross saturation experiments of the human ACC2 holo-biotinoyl upon the addition of the biotin ligase (BirA) showed the interaction surface near the MKM motif, the two glutamic acids (Glu 926, Glu 953), and the positively charged residues (several lysine and arginine residues). This study provides insight into the mechanism of ACC holoenzyme function and supports the swinging arm model in human ACCs.
乙酰辅酶A羧化酶(ACC)催化脂肪酸生物合成的第一步:由乙酰辅酶A合成丙二酰辅酶A。作为脂肪酸生物合成和代谢的关键调节因子,ACC被视为治疗肥胖等代谢疾病的治疗靶点。在ACC中,生物素结构域通过将生物素羧化酶结构域的活化羧基转移到羧基转移酶结构域发挥关键作用,随后羧基转移至丙二酰辅酶A。尽管对该酶进行了深入研究,但目前仅有细菌和酵母ACC的结构。为探究ACC全酶的功能机制,我们测定了人ACC2生物素结构域的结构,并利用核磁共振波谱分析了其特征以及与生物素连接酶BirA的相互作用。人ACC2生物素结构域的三维结构与先前测定的大肠杆菌和谢尔曼丙酸杆菌的结构具有相似的折叠拓扑结构。然而,生物素化位点附近的局部结构存在显著差异,包括共有“Met-Lys-Met”(MKM)基序的几何结构以及人ACC2生物素结构域中不存在“拇指”结构。生物素化后核磁共振信号的观察表明,人ACC2的生物素基团不影响生物素结构域的结构,而大肠杆菌ACC的生物素基团直接与hACC2结构中不存在的拇指残基相互作用。这些结果表明,在大肠杆菌ACC反应中,携带羧基从生物素羧化酶结构域转移至羧基转移酶结构域的生物素部分可在生物素羧基载体蛋白(BCCP)结构域的拇指处暂停。然而,人生物素结构域缺乏拇指结构,且与生物素部分没有额外的非共价相互作用;因此,生物素化赖氨酸残基的灵活运动必定是“摆动臂”运动的基础。添加生物素连接酶(BirA)后人ACC2全酶生物素的化学位移扰动和交叉饱和实验显示了MKM基序、两个谷氨酸(Glu 926、Glu 953)和带正电荷残基(几个赖氨酸和精氨酸残基)附近的相互作用表面。本研究深入了解了ACC全酶的功能机制,并支持了人ACC中的摆动臂模型。