Figueiredo M T, Leitão J N, Jain A K
Inst. Superior Tecnico, Inst. de Telecomunicaoes, Lisbon, Portugal.
IEEE Trans Image Process. 2000;9(6):1075-87. doi: 10.1109/83.846249.
This paper describes a new approach to adaptive estimation of parametric deformable contours based on B-spline representations. The problem is formulated in a statistical framework with the likelihood function being derived from a region-based image model. The parameters of the image model, the contour parameters, and the B-spline parameterization order (i.e., the number of control points) are all considered unknown. The parameterization order is estimated via a minimum description length (MDL) type criterion. A deterministic iterative algorithm is developed to implement the derived contour estimation criterion, the result is an unsupervised parametric deformable contour: it adapts its degree of smoothness/complexity (number of control points) and it also estimates the observation (image) model parameters. The experiments reported in the paper, performed on synthetic and real (medical) images, confirm the adequate and good performance of the approach.
本文描述了一种基于B样条表示的参数化可变形轮廓自适应估计的新方法。该问题在一个统计框架中进行了公式化,其似然函数是从基于区域的图像模型中推导出来的。图像模型的参数、轮廓参数以及B样条参数化阶数(即控制点的数量)均被视为未知。参数化阶数通过最小描述长度(MDL)类型准则进行估计。开发了一种确定性迭代算法来实现推导得出的轮廓估计准则,结果是一个无监督的参数化可变形轮廓:它能自适应其平滑度/复杂度(控制点数量),并且还能估计观测(图像)模型参数。本文所报告的在合成图像和真实(医学)图像上进行的实验,证实了该方法的充分性和良好性能。