Petridis V, Kazarlis S, Bakirtzis A
Dept. of Electr. & Comput. Eng., Aristotelian Univ. of Thessaloniki.
IEEE Trans Syst Man Cybern B Cybern. 1998;28(5):629-40. doi: 10.1109/3477.718514.
We present a specific varying fitness function technique in genetic algorithm (GA) constrained optimization. This technique incorporates the problem's constraints into the fitness function in a dynamic way. It consists of forming a fitness function with varying penalty terms. The resulting varying fitness function facilitates the GA search. The performance of the technique is tested on two optimization problems: the cutting stock, and the unit commitment problems. Also, new domain-specific operators are introduced. Solutions obtained by means of the varying and the conventional (nonvarying) fitness function techniques are compared. The results show the superiority of the proposed technique.
我们提出了一种用于遗传算法(GA)约束优化的特定可变适应度函数技术。该技术以动态方式将问题的约束纳入适应度函数。它包括形成一个带有可变惩罚项的适应度函数。由此产生的可变适应度函数有助于遗传算法的搜索。该技术的性能在两个优化问题上进行了测试:下料问题和机组组合问题。此外,还引入了新的特定领域算子。对通过可变适应度函数技术和传统(不变)适应度函数技术获得的解决方案进行了比较。结果表明了所提出技术的优越性。