Suppr超能文献

遗传算法约束优化中的不同适应度函数:下料问题和机组组合问题

Varying fitness functions in genetic algorithm constrained optimization: the cutting stock and unit commitment problems.

作者信息

Petridis V, Kazarlis S, Bakirtzis A

机构信息

Dept. of Electr. & Comput. Eng., Aristotelian Univ. of Thessaloniki.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 1998;28(5):629-40. doi: 10.1109/3477.718514.

Abstract

We present a specific varying fitness function technique in genetic algorithm (GA) constrained optimization. This technique incorporates the problem's constraints into the fitness function in a dynamic way. It consists of forming a fitness function with varying penalty terms. The resulting varying fitness function facilitates the GA search. The performance of the technique is tested on two optimization problems: the cutting stock, and the unit commitment problems. Also, new domain-specific operators are introduced. Solutions obtained by means of the varying and the conventional (nonvarying) fitness function techniques are compared. The results show the superiority of the proposed technique.

摘要

我们提出了一种用于遗传算法(GA)约束优化的特定可变适应度函数技术。该技术以动态方式将问题的约束纳入适应度函数。它包括形成一个带有可变惩罚项的适应度函数。由此产生的可变适应度函数有助于遗传算法的搜索。该技术的性能在两个优化问题上进行了测试:下料问题和机组组合问题。此外,还引入了新的特定领域算子。对通过可变适应度函数技术和传统(不变)适应度函数技术获得的解决方案进行了比较。结果表明了所提出技术的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验