Suppr超能文献

Generalized clustering networks and Kohonen's self-organizing scheme.

作者信息

Pal N R, Bezdek J C, Tsao E K

机构信息

Div. of Comput. Sci., Univ. of West Florida, Pensacola, FL.

出版信息

IEEE Trans Neural Netw. 1993;4(4):549-57. doi: 10.1109/72.238310.

Abstract

The relationship between the sequential hard c-means (SHCM) and learning vector quantization (LVQ) clustering algorithms is discussed. The impact and interaction of these two families of methods with Kohonen's self-organizing feature mapping (SOFM), which is not a clustering method but often lends ideas to clustering algorithms, are considered. A generalization of LVQ that updates all nodes for a given input vector is proposed. The network attempts to find a minimum of a well-defined objective function. The learning rules depend on the degree of distance match to the winner node; the lesser the degree of match with the winner, the greater the impact on nonwinner nodes. Numerical results indicate that the terminal prototypes generated by this modification of LVQ are generally insensitive to initialization and independent of any choice of learning coefficient. IRIS data obtained by E. Anderson's (1939) is used to illustrate the proposed method. Results are compared with the standard LVQ approach.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验