Suppr超能文献

一种构建递归神经网络的进化算法。

An evolutionary algorithm that constructs recurrent neural networks.

作者信息

Angeline P J, Saunders G M, Pollack J B

机构信息

Dept. of Comput. and Inf. Sci., Ohio State Univ., Columbus, OH.

出版信息

IEEE Trans Neural Netw. 1994;5(1):54-65. doi: 10.1109/72.265960.

Abstract

Standard methods for simultaneously inducing the structure and weights of recurrent neural networks limit every task to an assumed class of architectures. Such a simplification is necessary since the interactions between network structure and function are not well understood. Evolutionary computations, which include genetic algorithms and evolutionary programming, are population-based search methods that have shown promise in many similarly complex tasks. This paper argues that genetic algorithms are inappropriate for network acquisition and describes an evolutionary program, called GNARL, that simultaneously acquires both the structure and weights for recurrent networks. GNARL's empirical acquisition method allows for the emergence of complex behaviors and topologies that are potentially excluded by the artificial architectural constraints imposed in standard network induction methods.

摘要

同时诱导递归神经网络的结构和权重的标准方法将每个任务限制在假定的架构类别中。由于网络结构和功能之间的相互作用尚未得到很好的理解,这种简化是必要的。进化计算,包括遗传算法和进化规划,是基于种群的搜索方法,在许多类似的复杂任务中已显示出前景。本文认为遗传算法不适用于网络获取,并描述了一种称为GNARL的进化程序,它能同时获取递归网络的结构和权重。GNARL的经验获取方法允许出现复杂行为和拓扑结构,而这些可能会被标准网络归纳方法中人为施加的架构约束所排除。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验