Meir P, Metcalfe D B, Costa A C L, Fisher R A
School of Geosciences, University of Edinburgh, Edinburgh EH8 9XP, UK.
Philos Trans R Soc Lond B Biol Sci. 2008 May 27;363(1498):1849-55. doi: 10.1098/rstb.2007.0021.
Interannual variations in CO2 exchange across Amazonia, as deduced from atmospheric inversions, correlate with El Niño occurrence. They are thought to result from changes in net ecosystem exchange and fire incidence that are both related to drought intensity. Alterations to net ecosystem production (NEP) are caused by changes in gross primary production (GPP) and ecosystem respiration (Reco). Here, we analyse observations of the components of Reco (leaves, live and dead woody tissue, and soil) to provide first estimates of changes in Reco during short-term (seasonal to interannual) moisture limitation. Although photosynthesis declines if moisture availability is limiting, leaf dark respiration is generally maintained, potentially acclimating upwards in the longer term. If leaf area is lost, then short-term canopy-scale respiratory effluxes from wood and leaves are likely to decline. Using a moderate short-term drying scenario where soil moisture limitation leads to a loss of 0.5m2m-2yr-1 in leaf area index, we estimate a reduction in respiratory CO2 efflux from leaves and live woody tissue of 1.0 (+/-0.4) tCha-1yr-1. Necromass decomposition declines during drought, but mortality increases; the median mortality increase following a strong El Niño is 1.1% (n=46 tropical rainforest plots) and yields an estimated net short-term increase in necromass CO2 efflux of 0.13-0.18tCha-1yr-1. Soil respiration is strongly sensitive to moisture limitation over the short term, but not to associated temperature increases. This effect is underestimated in many models but can lead to estimated reductions in CO2 efflux of 2.0 (+/-0.5) tCha-1yr-1. Thus, the majority of short-term respiratory responses to drought point to a decline in Reco, an outcome that contradicts recent regional-scale modelling of NEP. NEP varies with both GPP and Reco but robust moisture response functions are clearly needed to improve quantification of the role of Reco in influencing regional-scale CO2 emissions from Amazonia.
根据大气反演推断,整个亚马逊地区二氧化碳交换的年际变化与厄尔尼诺现象的发生相关。这些变化被认为是由净生态系统交换和火灾发生率的变化导致的,而这两者都与干旱强度有关。净生态系统生产(NEP)的改变是由总初级生产(GPP)和生态系统呼吸(Reco)的变化引起的。在这里,我们分析了Reco各组成部分(叶片、活木本组织和死木本组织以及土壤)的观测数据,以初步估计短期(季节性至年际)水分限制期间Reco的变化。虽然如果水分供应受限,光合作用会下降,但叶片暗呼吸通常会维持,从长期来看可能会向上适应。如果叶面积减少,那么短期内木材和叶片的冠层尺度呼吸通量可能会下降。使用一个适度的短期干旱情景,即土壤水分限制导致叶面积指数每年损失0.5平方米每平方米,我们估计叶片和活木本组织的呼吸二氧化碳通量减少1.0(±0.4)吨碳每公顷每年。干旱期间死有机质分解减少,但死亡率增加;强厄尔尼诺事件后死亡率增加的中位数为1.1%(n = 46个热带雨林样地),估计死有机质二氧化碳通量的短期净增加量为0.13 - 0.18吨碳每公顷每年。土壤呼吸在短期内对水分限制非常敏感,但对相关的温度升高不敏感。这种效应在许多模型中被低估,但可能导致二氧化碳通量估计减少2.0(±0.5)吨碳每公顷每年。因此,大多数对干旱的短期呼吸响应表明Reco下降,这一结果与最近关于NEP的区域尺度模型相矛盾。NEP随GPP和Reco而变化,但显然需要强大的水分响应函数来改善对Reco在影响亚马逊地区区域尺度二氧化碳排放中作用的量化。