Suppr超能文献

磁悬浮运输系统的自适应模糊神经网络控制

Adaptive fuzzy-neural-network control for maglev transportation system.

作者信息

Wai Rong-Jong, Lee Jeng-Dao

机构信息

Department of Electrical Engineering, Yuan Ze University, Chung Li, Taiwan, ROC.

出版信息

IEEE Trans Neural Netw. 2008 Jan;19(1):54-70. doi: 10.1109/TNN.2007.900814.

Abstract

A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies.

摘要

由于其高度非线性和不稳定的特性,包含悬浮与推进控制的磁悬浮(maglev)运输系统是一个备受科学界关注的课题。本文首先基于机械几何和运动动力学概念,建立了一个包含悬浮电磁铁和推进式线性感应电机(LIM)的磁悬浮运输系统的动态模型。然后,引入了一种基于模型的滑模控制(SMC)策略。为了减轻因不确定性边界选择不当而引起的抖振现象,在SMC策略中嵌入了一种简单的边界估计算法,以形成自适应滑模控制(ASMC)方案。然而,这种估计算法始终为正值,以至于任何不确定性引入的跟踪误差都会导致估计边界随时间增加甚至趋于无穷大。因此,它进一步针对磁悬浮运输系统,通过模仿SMC策略设计了一种自适应模糊神经网络控制(AFNNC)方案。在无模型AFNNC中,设计了在线学习算法来解决SMC设计中符号作用引起的抖振现象问题,并确保控制系统的稳定性,即使存在不确定性也无需辅助补偿控制器。AFNNC方案的输出可以直接提供给电磁铁和LIM,无需复杂的控制变换,从而放宽了传统基于模型的控制方法中的严格约束。通过数值模拟验证了所提出的磁悬浮运输系统控制方案的有效性,并与SMC和ASMC策略相比,表明了AFNNC方案的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验