Suppr超能文献

基于信号自适应滤波器和自组织神经网络的非线性超声图像处理。

Nonlinear ultrasonic image processing based on signal-adaptive filters and self-organizing neural networks.

机构信息

Dept. of Electr. Eng., Thessaloniki Univ.

出版信息

IEEE Trans Image Process. 1994;3(1):65-77. doi: 10.1109/83.265980.

Abstract

Two approaches for ultrasonic image processing are examined. First, signal-adaptive maximum likelihood (SAML) filters are proposed for ultrasonic speckle removal. It is shown that in the case of displayed ultrasound (US) image data the maximum likelihood (ML) estimator of the original (noiseless) signal closely resembles the L(2) mean which has been proven earlier to be the ML estimator of the original signal in US B-mode data. Thus, the design of signal-adaptive L(2) mean filters is treated for US B-mode data and displayed US image data as well. Secondly, the segmentation of ultrasonic images using self-organizing neural networks (NN) is investigated. A modification of the learning vector quantizer (L(2 ) LVQ) is proposed in such a way that the weight vectors of the output neurons correspond to the L(2) mean instead of the sample arithmetic mean of the input observations. The convergence in the mean and in the mean square of the proposed L(2) LVQ NN are studied. L(2) LVQ is combined with signal-adaptive filtering in order to allow preservation of image edges and details as well as maximum speckle reduction in homogeneous regions.

摘要

考察了两种超声图像处理方法。首先,提出了用于超声散斑去除的信号自适应最大似然(SAML)滤波器。结果表明,在显示的超声(US)图像数据的情况下,原始(无噪声)信号的最大似然(ML)估计器非常类似于 L(2)均值,这已经证明在 US B 模式数据中是原始信号的 ML 估计器。因此,针对 US B 模式数据和显示的 US 图像数据,对信号自适应 L(2)均值滤波器的设计进行了处理。其次,研究了使用自组织神经网络(NN)对超声图像进行分割。以这样的方式对学习矢量量化器(L(2) LVQ)进行了修改,即输出神经元的权向量对应于 L(2)均值,而不是输入观测值的样本算术均值。研究了所提出的 L(2) LVQ NN 的均值和均方的收敛性。L(2) LVQ 与信号自适应滤波相结合,以允许在均匀区域中保留图像边缘和细节以及最大散斑减少。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验