Suppr超能文献

在逻辑回归中合并多个生物标志物模型。

Combining multiple biomarker models in logistic regression.

作者信息

Yuan Zheng, Ghosh Debashis

机构信息

Eli Lilly and Company, Indianapolis, Indiana 46285, USA.

出版信息

Biometrics. 2008 Jun;64(2):431-9. doi: 10.1111/j.1541-0420.2007.00904.x. Epub 2008 Mar 5.

Abstract

In medical research, there is great interest in developing methods for combining biomarkers. We argue that selection of markers should also be considered in the process. Traditional model/variable selection procedures ignore the underlying uncertainty after model selection. In this work, we propose a novel model-combining algorithm for classification in biomarker studies. It works by considering weighted combinations of various logistic regression models; five different weighting schemes are considered in the article. The weights and algorithm are justified using decision theory and risk-bound results. Simulation studies are performed to assess the finite-sample properties of the proposed model-combining method. It is illustrated with an application to data from an immunohistochemical study in prostate cancer.

摘要

在医学研究中,人们对开发生物标志物组合方法有着浓厚的兴趣。我们认为在这个过程中也应该考虑标志物的选择。传统的模型/变量选择程序忽略了模型选择后潜在的不确定性。在这项工作中,我们提出了一种用于生物标志物研究分类的新型模型组合算法。它通过考虑各种逻辑回归模型的加权组合来工作;本文考虑了五种不同的加权方案。使用决策理论和风险边界结果对权重和算法进行了论证。进行了模拟研究以评估所提出的模型组合方法的有限样本性质。通过应用于前列腺癌免疫组织化学研究的数据进行了说明。

相似文献

1
Combining multiple biomarker models in logistic regression.
Biometrics. 2008 Jun;64(2):431-9. doi: 10.1111/j.1541-0420.2007.00904.x. Epub 2008 Mar 5.
2
Regularized binormal ROC method in disease classification using microarray data.
BMC Bioinformatics. 2006 May 9;7:253. doi: 10.1186/1471-2105-7-253.
3
Dimension reduction-based penalized logistic regression for cancer classification using microarray data.
IEEE/ACM Trans Comput Biol Bioinform. 2005 Apr-Jun;2(2):166-75. doi: 10.1109/TCBB.2005.22.
4
Differential expression and network inferences through functional data modeling.
Biometrics. 2009 Sep;65(3):793-804. doi: 10.1111/j.1541-0420.2008.01159.x. Epub 2008 Nov 13.
5
Multi-class cancer classification using multinomial probit regression with Bayesian gene selection.
Syst Biol (Stevenage). 2006 Mar;153(2):70-8. doi: 10.1049/ip-syb:20050015.
6
Gene selection in cancer classification using sparse logistic regression with Bayesian regularization.
Bioinformatics. 2006 Oct 1;22(19):2348-55. doi: 10.1093/bioinformatics/btl386. Epub 2006 Jul 14.
7
Classification of proteomic data with multiclass Logistic Partial Least Squares algorithm.
Int J Bioinform Res Appl. 2008;4(1):1-10. doi: 10.1504/IJBRA.2008.01716.
8
Logistic regression for disease classification using microarray data: model selection in a large p and small n case.
Bioinformatics. 2007 Aug 1;23(15):1945-51. doi: 10.1093/bioinformatics/btm287. Epub 2007 May 31.
9
Inference of disease-related molecular logic from systems-based microarray analysis.
PLoS Comput Biol. 2006 Jun 16;2(6):e68. doi: 10.1371/journal.pcbi.0020068.
10
Bayesian model averaging: development of an improved multi-class, gene selection and classification tool for microarray data.
Bioinformatics. 2005 May 15;21(10):2394-402. doi: 10.1093/bioinformatics/bti319. Epub 2005 Feb 15.

引用本文的文献

1
Development and validation of a novel combinational index of liquid biopsy biomarker for longitudinal lung cancer patient management.
J Liq Biopsy. 2024 Sep 10;6:100167. doi: 10.1016/j.jlb.2024.100167. eCollection 2024 Dec.
3
Estimation for volunteer web survey samples using a model-averaging approach.
J Appl Stat. 2022 Aug 5;50(16):3251-3271. doi: 10.1080/02664763.2022.2107187. eCollection 2023.
4
A resample-replace lasso procedure for combining high-dimensional markers with limit of detection.
J Appl Stat. 2021 Sep 22;49(16):4278-4293. doi: 10.1080/02664763.2021.1977785. eCollection 2022.
5
Machine Learning-Based Identification of Colon Cancer Candidate Diagnostics Genes.
Biology (Basel). 2022 Feb 25;11(3):365. doi: 10.3390/biology11030365.
6
Deep learning risk assessment models for predicting progression of radiographic medial joint space loss over a 48-MONTH follow-up period.
Osteoarthritis Cartilage. 2020 Apr;28(4):428-437. doi: 10.1016/j.joca.2020.01.010. Epub 2020 Feb 6.
7
Model-free scoring system for risk prediction with application to hepatocellular carcinoma study.
Biometrics. 2018 Mar;74(1):239-248. doi: 10.1111/biom.12750. Epub 2017 Jul 25.
8
Bayesian inference for biomarker discovery in proteomics: an analytic solution.
EURASIP J Bioinform Syst Biol. 2017 Dec;2017(1):9. doi: 10.1186/s13637-017-0062-4. Epub 2017 Jul 14.
9
Combined 3 Tesla MRI Biomarkers Improve the Differentiation between Benign vs Malignant Single Ring Enhancing Brain Masses.
PLoS One. 2016 Jul 13;11(7):e0159047. doi: 10.1371/journal.pone.0159047. eCollection 2016.
10
Combining markers with and without the limit of detection.
Stat Med. 2014 Apr 15;33(8):1307-20. doi: 10.1002/sim.6027. Epub 2013 Oct 17.

本文引用的文献

1
Translational crossroads for biomarkers.
Clin Cancer Res. 2005 Sep 1;11(17):6103-8. doi: 10.1158/1078-0432.CCR-04-2213.
2
Combining biomarkers to detect disease with application to prostate cancer.
Biostatistics. 2003 Oct;4(4):523-38. doi: 10.1093/biostatistics/4.4.523.
3
Combining diagnostic test results to increase accuracy.
Biostatistics. 2000 Jun;1(2):123-40. doi: 10.1093/biostatistics/1.2.123.
4
Combining several screening tests: optimality of the risk score.
Biometrics. 2002 Sep;58(3):657-64. doi: 10.1111/j.0006-341x.2002.00657.x.
5
Emerging molecular markers of cancer.
Nat Rev Cancer. 2002 Mar;2(3):210-9. doi: 10.1038/nrc755.
6
Biomarkers and surrogate endpoints: preferred definitions and conceptual framework.
Clin Pharmacol Ther. 2001 Mar;69(3):89-95. doi: 10.1067/mcp.2001.113989.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验