Suppr超能文献

树枝状大分子连接羧酸盐的铁配合物用于活化双氧和氧化烃类。

Iron complexes of dendrimer-appended carboxylates for activating dioxygen and oxidizing hydrocarbons.

作者信息

Zhao Min, Helms Brett, Slonkina Elena, Friedle Simone, Lee Dongwhan, Dubois Jennifer, Hedman Britt, Hodgson Keith O, Fréchet Jean M J, Lippard Stephen J

机构信息

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.

出版信息

J Am Chem Soc. 2008 Apr 2;130(13):4352-63. doi: 10.1021/ja076817a. Epub 2008 Mar 11.

Abstract

The active sites of metalloenzymes are often deeply buried inside a hydrophobic protein sheath, which protects them from undesirable hydrolysis and polymerization reactions, allowing them to achieve their normal functions. In order to mimic the hydrophobic environment of the active sites in bacterial monooxygenases, diiron(II) compounds of the general formula [Fe2([G-3]COO)4(4-RPy)2] were prepared, where [G-3]COO- is a third-generation dendrimer-appended terphenyl carboxylate ligand and 4-RPy is a pyridine derivative. The dendrimer environment provides excellent protection for the diiron center, reducing its reactivity toward dioxygen by about 300-fold compared with analogous complexes of terphenyl carboxylate ([G-1]COO-) ligands. An FeIIFeIII intermediate was characterized by electronic, electron paramagnetic resonance, Mössbauer, and X-ray absorption spectroscopic analyses following the oxygenation of [Fe2([G-3]COO)4(4-PPy)2], where 4-PPy is 4-pyrrolidinopyridine. The results are consistent with the formation of a superoxo species. This diiron compound, in the presence of dioxygen, can oxidize external substrates.

摘要

金属酶的活性位点通常深埋在疏水的蛋白质外壳内部,这可保护它们免受不良的水解和聚合反应影响,使其能够发挥正常功能。为了模拟细菌单加氧酶中活性位点的疏水环境,制备了通式为[Fe2([G-3]COO)4(4-RPy)2]的二价铁化合物,其中[G-3]COO-是第三代树枝状聚合物连接的三联苯羧酸盐配体,4-RPy是吡啶衍生物。树枝状聚合物环境为二价铁中心提供了出色的保护,与三联苯羧酸盐([G-1]COO-)配体的类似配合物相比,其对双氧的反应活性降低了约300倍。在用[Fe2([G-3]COO)4(4-PPy)2]进行氧合反应后,通过电子、电子顺磁共振、穆斯堡尔和X射线吸收光谱分析对FeIIFeIII中间体进行了表征,其中4-PPy是4-吡咯烷基吡啶。结果与超氧物种的形成一致。这种二价铁化合物在有双氧存在的情况下可以氧化外部底物。

相似文献

1
Iron complexes of dendrimer-appended carboxylates for activating dioxygen and oxidizing hydrocarbons.
J Am Chem Soc. 2008 Apr 2;130(13):4352-63. doi: 10.1021/ja076817a. Epub 2008 Mar 11.
2
Influence of steric hindrance on the core geometry and sulfoxidation chemistry of carboxylate-rich diiron(II) complexes.
Inorg Chem. 2007 Nov 26;46(24):10229-40. doi: 10.1021/ic7014176. Epub 2007 Oct 31.
7
Role of carboxylate bridges in modulating nonheme diiron(II)/O(2) reactivity.
Inorg Chem. 2003 Nov 17;42(23):7519-30. doi: 10.1021/ic034359a.
9
Synthesis and oxidation of carboxylate-bridged diiron(II) complexes with substrates tethered to primary alkyl amine ligands.
J Inorg Biochem. 2006 May;100(5-6):1109-17. doi: 10.1016/j.jinorgbio.2005.11.019. Epub 2006 Jan 24.

引用本文的文献

2
Structural and Spectroscopic Evidence for a Side-on Fe(III)-Superoxo Complex Featuring Discrete O-O Bond Distances.
JACS Au. 2021 Sep 1;1(9):1389-1398. doi: 10.1021/jacsau.1c00184. eCollection 2021 Sep 27.
3
Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes.
Chem Rev. 2018 Mar 14;118(5):2554-2592. doi: 10.1021/acs.chemrev.7b00457. Epub 2018 Feb 5.
4
Characterization of a paramagnetic mononuclear nonheme iron-superoxo complex.
J Am Chem Soc. 2014 Aug 6;136(31):10846-9. doi: 10.1021/ja504410s. Epub 2014 Jul 24.
5
Triptycene-based Bis(benzimidazole) Carboxylate-Bridged Biomimetic Diiron(II) Complexes.
Eur J Inorg Chem. 2013 Apr 1;2013(12):2011-2019. doi: 10.1002/ejic.201201387.
6
Evolution of strategies to prepare synthetic mimics of carboxylate-bridged diiron protein active sites.
J Inorg Biochem. 2011 Dec;105(12):1774-85. doi: 10.1016/j.jinorgbio.2011.08.025. Epub 2011 Sep 14.
7
Dioxygen activation in soluble methane monooxygenase.
Acc Chem Res. 2011 Apr 19;44(4):280-8. doi: 10.1021/ar1001473. Epub 2011 Mar 10.
8
Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes.
Chem Soc Rev. 2010 Aug;39(8):2768-79. doi: 10.1039/c003079c. Epub 2010 May 20.
9
Oxygen activation at mononuclear nonheme iron centers: a superoxo perspective.
Inorg Chem. 2010 Apr 19;49(8):3618-28. doi: 10.1021/ic901891n.
10
Molecular determinants of the regioselectivity of toluene/o-xylene monooxygenase from Pseudomonas sp. strain OX1.
Appl Environ Microbiol. 2009 Feb;75(3):823-36. doi: 10.1128/AEM.01951-08. Epub 2008 Dec 12.

本文引用的文献

1
Dioxygen Activation and Methane Hydroxylation by Soluble Methane Monooxygenase: A Tale of Two Irons and Three Proteins.
Angew Chem Int Ed Engl. 2001 Aug 3;40(15):2782-2807. doi: 10.1002/1521-3773(20010803)40:15<2782::AID-ANIE2782>3.0.CO;2-P.
2
Intermediates in dioxygen activation by methane monooxygenase: a QM/MM study.
J Am Chem Soc. 2007 Mar 21;129(11):3135-47. doi: 10.1021/ja0654074. Epub 2007 Feb 28.
5
XFIT - an Interactive EXAFSAnalysis Program.
J Synchrotron Radiat. 1995 Jul 1;2(Pt 4):190-5. doi: 10.1107/S0909049595006789.
7
Iron-catalyzed olefin cis-dihydroxylation using a bio-inspired N,N,O-ligand.
J Am Chem Soc. 2005 Nov 16;127(45):15672-3. doi: 10.1021/ja054947i.
9
Intermediates in the oxygenation of a nonheme diiron(II) complex, including the first evidence for a bound superoxo species.
Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5340-5. doi: 10.1073/pnas.0409640102. Epub 2005 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验