Suppr超能文献

亚纳米分辨率下DNA依赖性蛋白激酶催化亚基的冷冻电镜结构揭示了α螺旋及对DNA结合的见解。

Cryo-EM structure of the DNA-dependent protein kinase catalytic subunit at subnanometer resolution reveals alpha helices and insight into DNA binding.

作者信息

Williams Dewight R, Lee Kyung-Jong, Shi Jian, Chen David J, Stewart Phoebe L

机构信息

Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.

出版信息

Structure. 2008 Mar;16(3):468-77. doi: 10.1016/j.str.2007.12.014.

Abstract

The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) regulates the nonhomologous end joining pathway for repair of double-stranded DNA (dsDNA) breaks. Here, we present a 7A resolution structure of DNA-PKcs determined by cryo-electron microscopy single-particle reconstruction. This structure is composed of density rods throughout the molecule that are indicative of alpha helices and reveals structural features not observed in lower resolution EM structures. Docking of homology models into the DNA-PKcs structure demonstrates that up to eight helical HEAT repeat motifs fit well within the density. Surprisingly, models for the kinase domain can be docked into either the crown or base of the molecule at this resolution, although real space refinement suggests that the base location is the best fit. We propose a model for the interaction of DNA with DNA-PKcs in which one turn of dsDNA enters the central channel and interacts with a resolved alpha-helical protrusion.

摘要

DNA依赖性蛋白激酶催化亚基(DNA-PKcs)调节双链DNA(dsDNA)断裂修复的非同源末端连接途径。在此,我们展示了通过冷冻电子显微镜单颗粒重建确定的DNA-PKcs的7埃分辨率结构。该结构由贯穿整个分子的密度棒组成,这些密度棒指示α螺旋,并揭示了在较低分辨率的电子显微镜结构中未观察到的结构特征。将同源模型对接至DNA-PKcs结构表明,多达八个螺旋HEAT重复基序与密度很好地契合。令人惊讶的是,在此分辨率下,激酶结构域的模型可以对接至分子的冠部或基部,尽管实际空间优化表明基部位置是最佳匹配。我们提出了一个DNA与DNA-PKcs相互作用的模型,其中一圈dsDNA进入中央通道并与一个已解析的α螺旋突出物相互作用。

相似文献

2
Cryo-EM structure of the DNA-PK holoenzyme.
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7367-7372. doi: 10.1073/pnas.1707386114. Epub 2017 Jun 26.
3
Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats.
Nature. 2010 Jan 7;463(7277):118-21. doi: 10.1038/nature08648. Epub 2009 Dec 20.
4
Cryo-EM structure of human DNA-PK holoenzyme.
Cell Res. 2017 Nov;27(11):1341-1350. doi: 10.1038/cr.2017.110. Epub 2017 Aug 25.
5
Cryo-EM imaging of the catalytic subunit of the DNA-dependent protein kinase.
J Mol Biol. 1998 Dec 11;284(4):1075-81. doi: 10.1006/jmbi.1998.2212.
6
Understanding the structure and role of DNA-PK in NHEJ: How X-ray diffraction and cryo-EM contribute in complementary ways.
Prog Biophys Mol Biol. 2019 Oct;147:26-32. doi: 10.1016/j.pbiomolbio.2019.03.007. Epub 2019 Apr 20.
8
Computational determination of the orientation of a heat repeat-like domain of DNA-PKcs.
Comput Biol Chem. 2013 Feb;42:1-4. doi: 10.1016/j.compbiolchem.2012.11.001. Epub 2012 Nov 19.
9
Structural insights into inhibitor regulation of the DNA repair protein DNA-PKcs.
Nature. 2022 Jan;601(7894):643-648. doi: 10.1038/s41586-021-04274-9. Epub 2022 Jan 5.
10
DNA-PKcs structure suggests an allosteric mechanism modulating DNA double-strand break repair.
Science. 2017 Feb 3;355(6324):520-524. doi: 10.1126/science.aak9654. Epub 2017 Feb 2.

引用本文的文献

1
Structural studies of protein-nucleic acid complexes: A brief overview of the selected techniques.
Comput Struct Biotechnol J. 2023 Apr 29;21:2858-2872. doi: 10.1016/j.csbj.2023.04.028. eCollection 2023.
2
Structural analysis of the basal state of the Artemis:DNA-PKcs complex.
Nucleic Acids Res. 2022 Jul 22;50(13):7697-7720. doi: 10.1093/nar/gkac564.
3
Role of PRKDC in cancer initiation, progression, and treatment.
Cancer Cell Int. 2021 Oct 26;21(1):563. doi: 10.1186/s12935-021-02229-8.
5
The Multifaceted Roles of Ku70/80.
Int J Mol Sci. 2021 Apr 16;22(8):4134. doi: 10.3390/ijms22084134.
6
Structure of an activated DNA-PK and its implications for NHEJ.
Mol Cell. 2021 Feb 18;81(4):801-810.e3. doi: 10.1016/j.molcel.2020.12.015. Epub 2020 Dec 31.
7
Visualizing functional dynamicity in the DNA-dependent protein kinase holoenzyme DNA-PK complex by integrating SAXS with cryo-EM.
Prog Biophys Mol Biol. 2021 Aug;163:74-86. doi: 10.1016/j.pbiomolbio.2020.09.003. Epub 2020 Sep 20.
8
Structural step forward for NHEJ.
Cell Res. 2017 Nov;27(11):1304-1306. doi: 10.1038/cr.2017.119. Epub 2017 Sep 19.
9
A Process of Resection-Dependent Nonhomologous End Joining Involving the Goddess Artemis.
Trends Biochem Sci. 2017 Sep;42(9):690-701. doi: 10.1016/j.tibs.2017.06.011. Epub 2017 Jul 21.
10
What Combined Measurements From Structures and Imaging Tell Us About DNA Damage Responses.
Methods Enzymol. 2017;592:417-455. doi: 10.1016/bs.mie.2017.04.005. Epub 2017 May 29.

本文引用的文献

1
Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks.
J Cell Biol. 2007 Apr 23;177(2):219-29. doi: 10.1083/jcb.200608077. Epub 2007 Apr 16.
2
The impact of translocations and gene fusions on cancer causation.
Nat Rev Cancer. 2007 Apr;7(4):233-45. doi: 10.1038/nrc2091. Epub 2007 Mar 15.
3
Processing of DNA for nonhomologous end-joining is controlled by kinase activity and XRCC4/ligase IV.
J Biol Chem. 2007 Apr 20;282(16):11950-9. doi: 10.1074/jbc.M610058200. Epub 2007 Jan 31.
4
Ab initio resolution measurement for single particle structures.
J Struct Biol. 2007 Jan;157(1):201-10. doi: 10.1016/j.jsb.2006.08.003. Epub 2006 Aug 15.
6
DNA-PKcs dependence of Artemis endonucleolytic activity, differences between hairpins and 5' or 3' overhangs.
J Biol Chem. 2006 Nov 10;281(45):33900-9. doi: 10.1074/jbc.M606023200. Epub 2006 Aug 16.
7
Role of non-homologous end joining (NHEJ) in maintaining genomic integrity.
DNA Repair (Amst). 2006 Sep 8;5(9-10):1042-8. doi: 10.1016/j.dnarep.2006.05.026. Epub 2006 Jul 5.
10
XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining.
Cell. 2006 Jan 27;124(2):301-13. doi: 10.1016/j.cell.2005.12.031.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验