Majumdar Amit, Pal Kuntal, Sarkar Sabyasachi
Department of Chemistry, IIT Kanpur, Kanpur, India.
Inorg Chem. 2008 Apr 21;47(8):3393-401. doi: 10.1021/ic7024268. Epub 2008 Mar 13.
Complexes analogous to the active site of dissimilatory nitrate reductase from Desulfovibrio desulfuricans are synthesized. The hexacoordinated complexes [PPh 4][Mo (IV)(PPh 3)(SR)(mnt) 2] (R = -CH 2CH 3 ( 1), -CH 2Ph ( 2)) released PPh 3 in solution to generate the active model cofactor, {Mo (IV)(SR)(mnt) 2} (1-), ready with a site for nitrate binding. Kinetics for nitrate reduction by the complexes 1 and 2 followed Michaelis-Menten saturation kinetics with a faster rate in the case of 1 ( V Max = 3.2 x 10 (-2) s (-1), K M = 2.3 x 10 (-4) M) than that reported earlier ( V Max = 4.2 x 10 (-3) s (-1), K M = 4.3 x 10 (-4) M) ( Majumdar, A. ; Pal, K. ; Sarkar, S. J. Am. Chem. Soc. 2006, 128, 4196- 4197 ). The oxidized molybdenum species may be reduced back by PPh 3 to the starting complex, and a catalytic cycle involving [Bu 4N][NO 3] and PPh 3 as the oxidizing and reducing substrates, respectively, is established with the complexes 1 and 2. Isostructural complexes, [Et 4N][Mo (IV)(PPh 3)(X)(mnt) 2] (X = -Br ( 3), -I ( 4)) did not show any reductive activity toward nitrate. The selectivity of the thiolate ligand for the functional activity and the cessation of such activity in isostructural halo complexes demonstrate the necessity of thiolate coordination. Electrochemical data of all these complexes correlate the ability of the thiolated species for such oxotransfer activity. Compounds 1 and 2 are capable of reducing substrates like TMANO or DMSO, but after the initial 15-20% conversion, the product trimethylamine or dimethylsulfide formed interacts with the active parent complexes 1 and 2 thereby slowing down further oxo-transfer reaction similar to feedback type reactions. From the functional nitrate reduction, the molybdenum species finally reacts with the nitrite formed leading to nitrosylation similar to the NO evolution reaction by periplasmic nitrate reductase from Pseudomonas dentrificans. All these complexes ( 1- 4) are characterized structurally by X-ray, elemental analysis, electrochemistry, electronic, FT-IR, mass and (31)P NMR spectroscopic measurements.
合成了与脱硫脱硫弧菌异化硝酸盐还原酶活性位点类似的配合物。六配位配合物[PPh₄][Mo(IV)(PPh₃)(SR)(mnt)₂](R = -CH₂CH₃ (1),-CH₂Ph (2))在溶液中释放出PPh₃,生成活性模型辅因子{Mo(IV)(SR)(mnt)₂}(1-),该辅因子具有一个用于硝酸盐结合的位点。配合物1和2还原硝酸盐的动力学遵循米氏饱和动力学,其中1的反应速率更快(Vmax = 3.2×10⁻² s⁻¹,KM = 2.3×10⁻⁴ M),高于先前报道的值(Vmax = 4.2×10⁻³ s⁻¹,KM = 4.3×10⁻⁴ M)(马宗达,A.;帕尔,K.;萨卡尔,S. 《美国化学会志》2006年,128卷,4196 - 4197页)。氧化态的钼物种可被PPh₃还原回起始配合物,配合物1和2建立了一个催化循环,其中分别以[Bu₄N][NO₃]和PPh₃作为氧化和还原底物。同构配合物[Et₄N][Mo(IV)(PPh₃)(X)(mnt)₂](X = -Br (3),-I (4))对硝酸盐没有任何还原活性。硫醇盐配体对功能活性的选择性以及同构卤代配合物中这种活性的停止证明了硫醇盐配位的必要性。所有这些配合物的电化学数据关联了硫醇化物种进行这种氧转移活性的能力。化合物1和2能够还原TMANO或DMSO等底物,但在初始15 - 20%的转化后,形成的产物三甲胺或二甲硫醚与活性母体配合物1和2相互作用,从而减缓了进一步的氧转移反应,类似于反馈型反应。从功能性硝酸盐还原来看,钼物种最终与形成的亚硝酸盐反应,导致亚硝基化,类似于反硝化假单胞菌周质硝酸盐还原酶的NO释放反应。所有这些配合物(1 - 4)通过X射线、元素分析、电化学、电子、傅里叶变换红外光谱、质谱和³¹P核磁共振光谱测量进行结构表征。