Dillon Thomas M, Ricci Margaret Speed, Vezina Chris, Flynn Gregory C, Liu Yaoqing Diana, Rehder Douglas S, Plant Matthew, Henkle Brad, Li Yu, Deechongkit Songpon, Varnum Brian, Wypych Jette, Balland Alain, Bondarenko Pavel V
Department of Pharmaceutics, Amgen Inc., Thousand Oaks, California 91320, USA.
J Biol Chem. 2008 Jun 6;283(23):16206-15. doi: 10.1074/jbc.M709988200. Epub 2008 Mar 12.
In the accompanying report ( Wypych, J., Li, M., Guo, A., Zhang, Z., Martinez, T., Allen, M. J., Fodor, S., Kelner, D. N., Flynn, G. C., Liu, Y. D., Bondarenko, P. V., Ricci, M. S., Dillon, T. M., and Balland, A. (2008) J. Biol. Chem. 283, 16194-16205 ), we have identified that the human IgG2 subclass exists as an ensemble of distinct isoforms, designated IgG2-A, -B, and -A/B, which differ by the disulfide connectivity at the hinge region. In this report, we studied the structural and functional properties of the IgG2 disulfide isoforms and compared them to IgG1. Human monoclonal IgG1 and IgG2 antibodies were designed with identical antigen binding regions, specific to interleukin-1 cell surface receptor type 1. In vitro biological activity measurements showed an increased activity of the IgG1 relative to the IgG2 in blocking interleukin-1beta ligand from binding to the receptor, suggesting that some of the IgG2 isoforms had lower activity. Under reduction-oxidation conditions, the IgG2 disulfide isoforms converted to IgG2-A when 1 m guanidine was used, whereas IgG2-B was enriched in the absence of guanidine. The relative potency of the antibodies in cell-based assays was: IgG1 > IgG2-A > IgG2 >> IgG2-B. This difference correlated with an increased hydrodynamic radius of IgG2-A relative to IgG2-B, as shown by biophysical characterization. The enrichment of disulfide isoforms and activity studies were extended to additional IgG2 monoclonal antibodies with various antigen targets. All IgG2 antibodies displayed the same disulfide conversion, but only a subset showed activity differences between IgG2-A and IgG2-B. Additionally, the distribution of isoforms was influenced by the light chain type, with IgG2lambda composed mostly of IgG2-A. Based on crystal structure analysis, we propose that IgG2 disulfide exchange is caused by the close proximity of several cysteine residues at the hinge and the reactivity of tandem cysteines within the hinge. Furthermore, the IgG2 isoforms were shown to interconvert in whole blood or a "blood-like" environment, thereby suggesting that the in vivo activity of human IgG2 may be dependent on the distribution of isoforms.
在随附报告中(Wypych, J., Li, M., Guo, A., Zhang, Z., Martinez, T., Allen, M. J., Fodor, S., Kelner, D. N., Flynn, G. C., Liu, Y. D., Bondarenko, P. V., Ricci, M. S., Dillon, T. M., and Balland, A. (2008) J. Biol. Chem. 283, 16194 - 16205),我们已确定人IgG2亚类以不同异构体的集合形式存在,命名为IgG2 - A、 - B和 - A/B,它们在铰链区的二硫键连接方式上存在差异。在本报告中,我们研究了IgG2二硫键异构体的结构和功能特性,并将它们与IgG1进行了比较。人源单克隆IgG1和IgG2抗体被设计为具有相同的抗原结合区域,特异性针对白细胞介素 - 1 1型细胞表面受体。体外生物学活性测量表明,相对于IgG2,IgG1在阻断白细胞介素 - 1β配体与受体结合方面具有更高的活性,这表明某些IgG2异构体的活性较低。在还原 - 氧化条件下,当使用1 M胍时,IgG2二硫键异构体转变为IgG2 - A,而在没有胍的情况下,IgG2 - B会富集。基于细胞实验的抗体相对效力为:IgG1 > IgG2 - A > IgG2 >> IgG2 - B。如生物物理表征所示,这种差异与IgG2 - A相对于IgG2 - B的流体动力学半径增加相关。二硫键异构体的富集和活性研究扩展到了具有各种抗原靶点的其他IgG2单克隆抗体。所有IgG2抗体都表现出相同的二硫键转换,但只有一部分在IgG2 - A和IgG2 - B之间显示出活性差异。此外,异构体的分布受轻链类型影响,IgG2λ主要由IgG2 - A组成。基于晶体结构分析,我们提出IgG2二硫键交换是由铰链区几个半胱氨酸残基的紧密接近以及铰链区内串联半胱氨酸的反应性引起的。此外,IgG2异构体在全血或“类血液”环境中被证明可以相互转化,从而表明人IgG2的体内活性可能取决于异构体的分布。