Suppr超能文献

人IgG2亚类二硫键异构体的结构与功能表征

Structural and functional characterization of disulfide isoforms of the human IgG2 subclass.

作者信息

Dillon Thomas M, Ricci Margaret Speed, Vezina Chris, Flynn Gregory C, Liu Yaoqing Diana, Rehder Douglas S, Plant Matthew, Henkle Brad, Li Yu, Deechongkit Songpon, Varnum Brian, Wypych Jette, Balland Alain, Bondarenko Pavel V

机构信息

Department of Pharmaceutics, Amgen Inc., Thousand Oaks, California 91320, USA.

出版信息

J Biol Chem. 2008 Jun 6;283(23):16206-15. doi: 10.1074/jbc.M709988200. Epub 2008 Mar 12.

Abstract

In the accompanying report ( Wypych, J., Li, M., Guo, A., Zhang, Z., Martinez, T., Allen, M. J., Fodor, S., Kelner, D. N., Flynn, G. C., Liu, Y. D., Bondarenko, P. V., Ricci, M. S., Dillon, T. M., and Balland, A. (2008) J. Biol. Chem. 283, 16194-16205 ), we have identified that the human IgG2 subclass exists as an ensemble of distinct isoforms, designated IgG2-A, -B, and -A/B, which differ by the disulfide connectivity at the hinge region. In this report, we studied the structural and functional properties of the IgG2 disulfide isoforms and compared them to IgG1. Human monoclonal IgG1 and IgG2 antibodies were designed with identical antigen binding regions, specific to interleukin-1 cell surface receptor type 1. In vitro biological activity measurements showed an increased activity of the IgG1 relative to the IgG2 in blocking interleukin-1beta ligand from binding to the receptor, suggesting that some of the IgG2 isoforms had lower activity. Under reduction-oxidation conditions, the IgG2 disulfide isoforms converted to IgG2-A when 1 m guanidine was used, whereas IgG2-B was enriched in the absence of guanidine. The relative potency of the antibodies in cell-based assays was: IgG1 > IgG2-A > IgG2 >> IgG2-B. This difference correlated with an increased hydrodynamic radius of IgG2-A relative to IgG2-B, as shown by biophysical characterization. The enrichment of disulfide isoforms and activity studies were extended to additional IgG2 monoclonal antibodies with various antigen targets. All IgG2 antibodies displayed the same disulfide conversion, but only a subset showed activity differences between IgG2-A and IgG2-B. Additionally, the distribution of isoforms was influenced by the light chain type, with IgG2lambda composed mostly of IgG2-A. Based on crystal structure analysis, we propose that IgG2 disulfide exchange is caused by the close proximity of several cysteine residues at the hinge and the reactivity of tandem cysteines within the hinge. Furthermore, the IgG2 isoforms were shown to interconvert in whole blood or a "blood-like" environment, thereby suggesting that the in vivo activity of human IgG2 may be dependent on the distribution of isoforms.

摘要

在随附报告中(Wypych, J., Li, M., Guo, A., Zhang, Z., Martinez, T., Allen, M. J., Fodor, S., Kelner, D. N., Flynn, G. C., Liu, Y. D., Bondarenko, P. V., Ricci, M. S., Dillon, T. M., and Balland, A. (2008) J. Biol. Chem. 283, 16194 - 16205),我们已确定人IgG2亚类以不同异构体的集合形式存在,命名为IgG2 - A、 - B和 - A/B,它们在铰链区的二硫键连接方式上存在差异。在本报告中,我们研究了IgG2二硫键异构体的结构和功能特性,并将它们与IgG1进行了比较。人源单克隆IgG1和IgG2抗体被设计为具有相同的抗原结合区域,特异性针对白细胞介素 - 1 1型细胞表面受体。体外生物学活性测量表明,相对于IgG2,IgG1在阻断白细胞介素 - 1β配体与受体结合方面具有更高的活性,这表明某些IgG2异构体的活性较低。在还原 - 氧化条件下,当使用1 M胍时,IgG2二硫键异构体转变为IgG2 - A,而在没有胍的情况下,IgG2 - B会富集。基于细胞实验的抗体相对效力为:IgG1 > IgG2 - A > IgG2 >> IgG2 - B。如生物物理表征所示,这种差异与IgG2 - A相对于IgG2 - B的流体动力学半径增加相关。二硫键异构体的富集和活性研究扩展到了具有各种抗原靶点的其他IgG2单克隆抗体。所有IgG2抗体都表现出相同的二硫键转换,但只有一部分在IgG2 - A和IgG2 - B之间显示出活性差异。此外,异构体的分布受轻链类型影响,IgG2λ主要由IgG2 - A组成。基于晶体结构分析,我们提出IgG2二硫键交换是由铰链区几个半胱氨酸残基的紧密接近以及铰链区内串联半胱氨酸的反应性引起的。此外,IgG2异构体在全血或“类血液”环境中被证明可以相互转化,从而表明人IgG2的体内活性可能取决于异构体的分布。

相似文献

1
Structural and functional characterization of disulfide isoforms of the human IgG2 subclass.
J Biol Chem. 2008 Jun 6;283(23):16206-15. doi: 10.1074/jbc.M709988200. Epub 2008 Mar 12.
2
Human IgG2 antibodies display disulfide-mediated structural isoforms.
J Biol Chem. 2008 Jun 6;283(23):16194-205. doi: 10.1074/jbc.M709987200. Epub 2008 Mar 13.
3
IgG2 disulfide isoform conversion kinetics.
Mol Immunol. 2013 Jun;54(2):217-26. doi: 10.1016/j.molimm.2012.12.005. Epub 2013 Jan 2.
4
Influence of disulfide bond isoforms on drug conjugation sites in cysteine-linked IgG2 antibody-drug conjugates.
MAbs. 2018 May/Jun;10(4):583-595. doi: 10.1080/19420862.2018.1440165. Epub 2018 Mar 6.
5
Conformational difference in human IgG2 disulfide isoforms revealed by hydrogen/deuterium exchange mass spectrometry.
Biochemistry. 2015 Mar 17;54(10):1956-62. doi: 10.1021/bi5015216. Epub 2015 Mar 5.
6
Rapid, automated characterization of disulfide bond scrambling and IgG2 isoform determination.
MAbs. 2018 Nov-Dec;10(8):1200-1213. doi: 10.1080/19420862.2018.1512328. Epub 2018 Oct 2.
7
Protected hinge in the immunoglobulin G2-A2 disulfide isoform.
Protein Sci. 2014 Dec;23(12):1753-64. doi: 10.1002/pro.2557. Epub 2014 Oct 23.
8
Impact of antibody subclass and disulfide isoform differences on the biological activity of CD200R and βklotho agonist antibodies.
Biochem Biophys Res Commun. 2017 May 13;486(4):985-991. doi: 10.1016/j.bbrc.2017.03.145. Epub 2017 Mar 28.
10
Disulfide connectivity of human immunoglobulin G2 structural isoforms.
Biochemistry. 2008 Jul 15;47(28):7496-508. doi: 10.1021/bi800576c. Epub 2008 Jun 13.

引用本文的文献

3
Nanomechanical binding mechanism of ligands drives agonistic activity.
Nat Commun. 2025 Jul 19;16(1):6674. doi: 10.1038/s41467-025-61929-1.
4
Spotlight on Glycan Pairing: The Generation and Impact of Monoclonal Antibody Asymmetrical Fc N‑Glycan Pairs on Fc Receptor Interaction.
ACS Pharmacol Transl Sci. 2025 May 21;8(6):1756-1767. doi: 10.1021/acsptsci.5c00185. eCollection 2025 Jun 13.
5
Structure-guided disulfide engineering restricts antibody conformation to elicit TNFR agonism.
Nat Commun. 2025 Apr 12;16(1):3495. doi: 10.1038/s41467-025-58773-8.
6
Efficacy and safety of JMT103 in patients with bone metastases from solid tumors: A randomized Phase Ib clinical trial.
Int J Cancer. 2025 Jun 1;156(11):2178-2187. doi: 10.1002/ijc.35343. Epub 2025 Jan 23.
8
Systematic analysis of Fc mutations designed to reduce binding to Fc-gamma receptors.
MAbs. 2024 Jan-Dec;16(1):2402701. doi: 10.1080/19420862.2024.2402701. Epub 2024 Sep 15.
9
Living in LALA land? Forty years of attenuating Fc effector functions.
Immunol Rev. 2024 Nov;328(1):422-437. doi: 10.1111/imr.13379. Epub 2024 Aug 19.
10
Impact of structural modifications of IgG antibodies on effector functions.
Front Immunol. 2024 Jan 8;14:1304365. doi: 10.3389/fimmu.2023.1304365. eCollection 2023.

本文引用的文献

1
Human IgG2 antibodies display disulfide-mediated structural isoforms.
J Biol Chem. 2008 Jun 6;283(23):16194-205. doi: 10.1074/jbc.M709987200. Epub 2008 Mar 13.
2
Heterogeneity of monoclonal antibodies.
J Pharm Sci. 2008 Jul;97(7):2426-47. doi: 10.1002/jps.21180.
4
Antibody therapeutics: isotype and glycoform selection.
Expert Opin Biol Ther. 2007 Sep;7(9):1401-13. doi: 10.1517/14712598.7.9.1401.
5
Cytokines in the pathogenesis of rheumatoid arthritis.
Nat Rev Immunol. 2007 Jun;7(6):429-42. doi: 10.1038/nri2094.
6
Structural comparison of fucosylated and nonfucosylated Fc fragments of human immunoglobulin G1.
J Mol Biol. 2007 May 4;368(3):767-79. doi: 10.1016/j.jmb.2007.02.034. Epub 2007 Feb 22.
7
Human immunoglobulin G2 (IgG2) and IgG4, but not IgG1 or IgG3, protect mice against Cryptococcus neoformans infection.
Infect Immun. 2007 Mar;75(3):1424-35. doi: 10.1128/IAI.01161-06. Epub 2007 Jan 12.
8
Downstream processing of monoclonal antibodies--application of platform approaches.
J Chromatogr B Analyt Technol Biomed Life Sci. 2007 Mar 15;848(1):28-39. doi: 10.1016/j.jchromb.2006.09.026. Epub 2006 Oct 13.
9
Post-translational modifications in the context of therapeutic proteins.
Nat Biotechnol. 2006 Oct;24(10):1241-52. doi: 10.1038/nbt1252.
10
The impact of glycosylation on the biological function and structure of human immunoglobulins.
Annu Rev Immunol. 2007;25:21-50. doi: 10.1146/annurev.immunol.25.022106.141702.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验