Vdovenko Sergey I, Gerus Igor I, Kukhar Valery P
Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Str. Murmanska 1, 02094 Kiev, Ukraine.
Spectrochim Acta A Mol Biomol Spectrosc. 2008 Dec 1;71(3):779-85. doi: 10.1016/j.saa.2008.01.031. Epub 2008 Feb 7.
Infrared spectroscopy studies of six beta-alkoxyvinyl methyl ketones, with common structure R(1)O-CR(2)CH-COR(3), where R(1)=R(3)=CH(3), R(2)=H (1); R(1)=C(2)H(5), R(2)=H (2); R(3)=CF(3); R(1)=R(2)=CH(3), R(3)=CF(3) (3); R(1)=C(2)H(5), R(2)=C(6)H(5), R(3)=CF(3) (4); R(1)=C(2)H(5), R(2)=4-O(2)NC(6)H(4), R(3)=CF(3) (5); R(1)=C(2)H(5), R(2)=C(CH(3))(3), R(3)=CF(3) (6) in 11 pure organic solvents of different polarity were undertaken to investigate the solute-solvent interactions and to correlate solvent properties by means of linear solvation energy relationships (LSER) with the carbonyl and vinyl stretching vibrations of existing stereoisomeric forms. It was shown that contrary to simple carbonyl-containing compounds where solvent HBD acidity (alpha) has the largest influence on the nu (CO) band shift to lower wavenumbers, the dipolarity/polarizability (pi) term plays the main role in the interactions of conjugated enones with solvent molecules leading to the nu (CO) and nu (CC) bathochromic band shifts. The trifluoroacetyl group possesses a reduced ability to form hydrogen bonds with solvents. For the nu (CC) band of non-fluorinated enone 1 solvent HBD acidity (alpha) and solvent HBA basicity term (beta) play a perceptible role, whereas for 2 these terms are not significant. beta-Substituents in fluorinated enones such as R(2)=H, C(6)H(5), and C(CH(3))(3) assist in the intermolecular hydrogen bond formation of the carbonyl moiety with HBD solvents, while beta-substituents such as CH(3) and 4-NO(2)C(6)H(4) prevent the CO group to form the H-bonds with HBD solvents (the solvent HBD acidity term (alpha) is not significant). The comparison of four conformers of the enone 1 reveals that (EEE) form is the most polarizable conformer; the influences of the solvent dipolarity/polarizability (pi) and solvent HBD acidity (alpha) term on the bathochromic nu (CO) band shift are opposite to one another.
对六种β-烷氧基乙烯基甲基酮进行了红外光谱研究,其结构通式为R(1)O-CR(2)CH-COR(3),其中R(1)=R(3)=CH(3),R(2)=H (1);R(1)=C(2)H(5),R(2)=H (2);R(3)=CF(3);R(1)=R(2)=CH(3),R(3)=CF(3) (3);R(1)=C(2)H(5),R(2)=C(6)H(5),R(3)=CF(3) (4);R(1)=C(2)H(5),R(2)=4-O(2)NC(6)H(4),R(3)=CF(3) (5);R(1)=C(2)H(5),R(2)=C(CH(3))(3),R(3)=CF(3) (6)。研究在11种不同极性的纯有机溶剂中进行,以研究溶质 - 溶剂相互作用,并通过线性溶剂化能关系(LSER)将溶剂性质与现有立体异构体形式的羰基和乙烯基伸缩振动相关联。结果表明,与简单的含羰基化合物不同,在简单含羰基化合物中溶剂HBD酸度(α)对ν(CO)带移向低波数的影响最大,而偶极矩/极化率(π)项在共轭烯酮与溶剂分子的相互作用中起主要作用,导致ν(CO)和ν(CC)吸收带发生红移。三氟乙酰基与溶剂形成氢键的能力降低。对于非氟化烯酮1的ν(CC)带,溶剂HBD酸度(α)和溶剂HBA碱度项(β)起明显作用,而对于化合物2,这些项不显著。氟化烯酮中的β-取代基,如R(2)=H、C(6)H(5)和C(CH(3))(3),有助于羰基部分与HBD溶剂形成分子间氢键,而β-取代基如CH(3)和4-NO(2)C(6)H(4)则阻止CO基团与HBD溶剂形成氢键(溶剂HBD酸度项(α)不显著)。烯酮化合物1的四种构象的比较表明,(EEE)形式是最可极化的构象;溶剂偶极矩/极化率(π)和溶剂HBD酸度(α)项对ν(CO)吸收带红移的影响彼此相反。