Suppr超能文献

具有高阶张量数据的判别局部线性嵌入

Discriminant locally linear embedding with high-order tensor data.

作者信息

Li Xuelong, Lin Stephen, Yan Shuicheng, Xu Dong

机构信息

School of Computer Science and Information Systems, Birkbeck College, University of London, London, UK.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2008 Apr;38(2):342-52. doi: 10.1109/TSMCB.2007.911536.

Abstract

Graph-embedding along with its linearization and kernelization provides a general framework that unifies most traditional dimensionality reduction algorithms. From this framework, we propose a new manifold learning technique called discriminant locally linear embedding (DLLE), in which the local geometric properties within each class are preserved according to the locally linear embedding (LLE) criterion, and the separability between different classes is enforced by maximizing margins between point pairs on different classes. To deal with the out-of-sample problem in visual recognition with vector input, the linear version of DLLE, i.e., linearization of DLLE (DLLE/L), is directly proposed through the graph-embedding framework. Moreover, we propose its multilinear version, i.e., tensorization of DLLE, for the out-of-sample problem with high-order tensor input. Based on DLLE, a procedure for gait recognition is described. We conduct comprehensive experiments on both gait and face recognition, and observe that: 1) DLLE along its linearization and tensorization outperforms the related versions of linear discriminant analysis, and DLLE/L demonstrates greater effectiveness than the linearization of LLE; 2) algorithms based on tensor representations are generally superior to linear algorithms when dealing with intrinsically high-order data; and 3) for human gait recognition, DLLE/L generally obtains higher accuracy than state-of-the-art gait recognition algorithms on the standard University of South Florida gait database.

摘要

图嵌入及其线性化和核化提供了一个统一大多数传统降维算法的通用框架。基于这个框架,我们提出了一种新的流形学习技术,称为判别局部线性嵌入(DLLE),其中根据局部线性嵌入(LLE)准则保留每个类内的局部几何属性,并通过最大化不同类上点对之间的间隔来增强不同类之间的可分性。为了解决向量输入的视觉识别中的样本外问题,通过图嵌入框架直接提出了DLLE的线性版本,即DLLE的线性化(DLLE/L)。此外,我们针对高阶张量输入的样本外问题提出了其多线性版本,即DLLE的张量化。基于DLLE,描述了一种步态识别方法。我们在步态和人脸识别上都进行了全面的实验,并观察到:1)DLLE及其线性化和张量化优于线性判别分析的相关版本,并且DLLE/L比LLE的线性化表现出更高的有效性;2)基于张量表示的算法在处理本质上的高阶数据时通常优于线性算法;3)对于人类步态识别,在标准的南佛罗里达大学步态数据库上,DLLE/L通常比当前最先进的步态识别算法获得更高的准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验