Ribeiro Andre S, Kauffman Stuart A, Lloyd-Price Jason, Samuelsson Björn, Socolar Joshua E S
Institute for Biocomplexity and Informatics, University of Calgary, Calgary, Alberta, Canada, T2N 1N4.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jan;77(1 Pt 1):011901. doi: 10.1103/PhysRevE.77.011901. Epub 2008 Jan 3.
The amount of mutual information contained in the time series of two elements gives a measure of how well their activities are coordinated. In a large, complex network of interacting elements, such as a genetic regulatory network within a cell, the average of the mutual information over all pairs, , is a global measure of how well the system can coordinate its internal dynamics. We study this average pairwise mutual information in random Boolean networks (RBNs) as a function of the distribution of Boolean rules implemented at each element, assuming that the links in the network are randomly placed. Efficient numerical methods for calculating show that as the number of network nodes, N, approaches infinity, the quantity N exhibits a discontinuity at parameter values corresponding to critical RBNs. For finite systems it peaks near the critical value, but slightly in the disordered regime for typical parameter variations. The source of high values of N is the indirect correlations between pairs of elements from different long chains with a common starting point. The contribution from pairs that are directly linked approaches zero for critical networks and peaks deep in the disordered regime.
两个元素的时间序列中包含的互信息量给出了它们活动协调程度的一种度量。在一个由相互作用元素构成的大型复杂网络中,比如细胞内的基因调控网络,所有元素对的互信息平均值⟨I⟩,是该系统协调其内部动态能力的一种全局度量。我们将随机布尔网络(RBN)中的这种平均成对互信息作为每个元素所实现的布尔规则分布的函数来进行研究,假设网络中的连接是随机放置的。用于计算⟨I⟩的高效数值方法表明,随着网络节点数量N趋近于无穷大,量N⟨I⟩在对应于临界RBN的参数值处表现出不连续性。对于有限系统,它在临界值附近达到峰值,但对于典型的参数变化,在无序区域中峰值略低。N⟨I⟩高值的来源是来自具有共同起点的不同长链的元素对之间的间接相关性。对于临界网络,直接相连的元素对的贡献趋近于零,而在无序区域深处达到峰值。