Suppr超能文献

Estimating interdependences in networks of weakly coupled deterministic systems.

作者信息

De Feo Oscar, Carmeli Cristian

机构信息

Department of Microelectronic Engineering, University College Cork, North Mall, Cork, Ireland.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Feb;77(2 Pt 2):026711. doi: 10.1103/PhysRevE.77.026711. Epub 2008 Feb 27.

Abstract

The extraction of information from measured data about the interactions taking place in a network of systems is a key topic in modern applied sciences. This topic has been traditionally addressed by considering bivariate time series, providing methods which are sometimes difficult to extend to multivariate data, the limiting factor being the computational complexity. Here, we present a computationally viable method based on black-box modeling which, while theoretically applicable only when a deterministic hypothesis about the processes behind the recordings is plausible, proves to work also when this assumption is severely affected. Conceptually, the method is very simple and is composed of three independent steps: in the first step a state-space reconstruction is performed separately on each measured signal; in the second step, a local model, i.e., a nonlinear dynamical system, is fitted separately on each (reconstructed) measured signal; afterward, a linear model of the dynamical interactions is obtained by cross-relating the (reconstructed) measured variables to the dynamics unexplained by the local models. The method is successfully validated on numerically generated data. An assessment of its sensitivity to data length and modeling and measurement noise intensity, and of its applicability to large-scale systems, is also provided.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验