Suppr超能文献

参与炔雌醇甲醚和炔诺酮体外生物转化的人细胞色素P450酶的鉴定。

Identification of the human cytochrome P450 enzymes involved in the in vitro biotransformation of lynestrenol and norethindrone.

作者信息

Korhonen Tuomas, Turpeinen Miia, Tolonen Ari, Laine Kari, Pelkonen Olavi

机构信息

Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Itäinen Pitkäkatu 4B, FIN-20520 Turku, Finland.

出版信息

J Steroid Biochem Mol Biol. 2008 May;110(1-2):56-66. doi: 10.1016/j.jsbmb.2007.09.025. Epub 2008 Feb 15.

Abstract

This study examined the cytochrome P450 (CYP) enzyme selectivity of in vitro bioactivation of lynestrenol to norethindrone and the further metabolism of norethindrone. Screening with well-established chemical inhibitors showed that the formation of norethindrone was potently inhibited by CYP3A4 inhibitor ketoconazole (IC(50)=0.02 microM) and with CYP2C9 inhibitor sulphaphenazole (IC(50)=2.13 microM); the further biotransformation of norethindrone was strongly inhibited by ketoconazole (IC(50)=0.09 microM). Fluconazole modestly inhibited both lynestrenol bioactivation and norethindrone biotransformation. Lynestrenol bioactivation was mainly catalysed by recombinant human CYP2C9, CYP2C19 and CYP3A4; rCYP3A4 was responsible for the hydroxylation of norethindrone. A significant correlation was observed between norethindrone formation and tolbutamide hydroxylation, a CYP2C9-selective activity (r=0.63; p=0.01). Norethindrone hydroxylation correlated significantly with model reactions of CYP2C19 and CYP3A4. The greatest immunoinhibition of lynestrenol bioactivation was seen in incubations with CYP2C-Ab. The CYP3A4-Ab reduced norethindrone hydroxylation by 96%. Both lynestrenol and norethindrone were weak inhibitors of CYP2C9 (IC(50) of 32 microM and 46 microM for tolbutamide hydroxylation, respectively). In conclusion, CYP2C9, CYP2C19 and CYP3A4 are the primary cytochromes in the bioactivation of lynestrenol in vitro, while CYP3A4 catalyses the further metabolism of norethindrone.

摘要

本研究考察了炔雌醇体外生物活化生成炔诺酮的细胞色素P450(CYP)酶选择性以及炔诺酮的进一步代谢情况。使用成熟的化学抑制剂进行筛选表明,CYP3A4抑制剂酮康唑(IC(50)=0.02微摩尔)和CYP2C9抑制剂磺胺苯吡唑(IC(50)=2.13微摩尔)能有效抑制炔诺酮的生成;酮康唑(IC(50)=0.09微摩尔)强烈抑制炔诺酮的进一步生物转化。氟康唑对炔雌醇生物活化和炔诺酮生物转化均有适度抑制作用。炔雌醇生物活化主要由重组人CYP2C9、CYP2C19和CYP3A4催化;重组CYP3A4负责炔诺酮的羟基化反应。炔诺酮生成与甲苯磺丁脲羟基化(一种CYP2C9选择性活性)之间存在显著相关性(r=0.63;p=0.01)。炔诺酮羟基化与CYP2C19和CYP3A4的模型反应显著相关。在与CYP2C抗体孵育时,观察到炔雌醇生物活化的最大免疫抑制作用。CYP3A4抗体使炔诺酮羟基化降低了96%。炔雌醇和炔诺酮均为CYP2C9的弱抑制剂(甲苯磺丁脲羟基化的IC(50)分别为32微摩尔和46微摩尔)。总之,CYP2C9、CYP2C19和CYP3A4是体外炔雌醇生物活化的主要细胞色素,而CYP3A4催化炔诺酮的进一步代谢。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验