Suppr超能文献

DNA中 hole转移的电子耦合和在位能:系统的量子力学/分子动力学研究

Electronic couplings and on-site energies for hole transfer in DNA: systematic quantum mechanical/molecular dynamic study.

作者信息

Voityuk Alexander A

机构信息

Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.

出版信息

J Chem Phys. 2008 Mar 21;128(11):115101. doi: 10.1063/1.2841421.

Abstract

The electron hole transfer (HT) properties of DNA are substantially affected by thermal fluctuations of the pi stack structure. Depending on the mutual position of neighboring nucleobases, electronic coupling V may change by several orders of magnitude. In the present paper, we report the results of systematic QM/molecular dynamic (MD) calculations of the electronic couplings and on-site energies for the hole transfer. Based on 15 ns MD trajectories for several DNA oligomers, we calculate the average coupling squares V(2) and the energies of basepair triplets XG(+)Y and XA(+)Y, where X, Y=G, A, T, and C. For each of the 32 systems, 15,000 conformations separated by 1 ps are considered. The three-state generalized Mulliken-Hush method is used to derive electronic couplings for HT between neighboring basepairs. The adiabatic energies and dipole moment matrix elements are computed within the INDO/S method. We compare the rms values of V with the couplings estimated for the idealized B-DNA structure and show that in several important cases the couplings calculated for the idealized B-DNA structure are considerably underestimated. The rms values for intrastrand couplings G-G, A-A, G-A, and A-G are found to be similar, approximately 0.07 eV, while the interstrand couplings are quite different. The energies of hole states G(+) and A(+) in the stack depend on the nature of the neighboring pairs. The XG(+)Y are by 0.5 eV more stable than XA(+)Y. The thermal fluctuations of the DNA structure facilitate the HT process from guanine to adenine. The tabulated couplings and on-site energies can be used as reference parameters in theoretical and computational studies of HT processes in DNA.

摘要

DNA的电子空穴转移(HT)特性会受到π堆积结构热涨落的显著影响。根据相邻核碱基的相互位置,电子耦合V可能会改变几个数量级。在本文中,我们报告了对空穴转移的电子耦合和在位能进行系统量子力学/分子动力学(QM/MD)计算的结果。基于几种DNA寡聚物的15 ns MD轨迹,我们计算了平均耦合平方V(2)以及碱基对三联体XG(+)Y和XA(+)Y的能量,其中X、Y = G、A、T和C。对于这32个系统中的每一个,都考虑了间隔1 ps的15,000个构象。采用三态广义穆利肯-赫什方法来推导相邻碱基对之间HT的电子耦合。在INDO/S方法中计算绝热能量和偶极矩矩阵元。我们将V的均方根值与理想化B-DNA结构估计的耦合进行比较,结果表明在几个重要情况下,理想化B-DNA结构计算的耦合被大大低估了。发现链内耦合G-G、A-A、G-A和A-G的均方根值相似,约为0.07 eV,而链间耦合则有很大不同。堆积中G(+)和A(+)空穴态的能量取决于相邻对的性质。XG(+)Y比XA(+)Y稳定0.5 eV。DNA结构的热涨落促进了从鸟嘌呤到腺嘌呤的HT过程。列表中的耦合和在位能可作为DNA中HT过程理论和计算研究的参考参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验