Xiang Tao, Gong Shaogang
Department of Computer Science, Queen Mary, University of London, London, UK.
IEEE Trans Pattern Anal Mach Intell. 2008 May;30(5):893-908. doi: 10.1109/TPAMI.2007.70731.
This paper aims to address the problem of modelling video behaviour captured in surveillancevideos for the applications of online normal behaviour recognition and anomaly detection. A novelframework is developed for automatic behaviour profiling and online anomaly sampling/detectionwithout any manual labelling of the training dataset. The framework consists of the followingkey components: (1) A compact and effective behaviour representation method is developed basedon discrete scene event detection. The similarity between behaviour patterns are measured basedon modelling each pattern using a Dynamic Bayesian Network (DBN). (2) Natural grouping ofbehaviour patterns is discovered through a novel spectral clustering algorithm with unsupervisedmodel selection and feature selection on the eigenvectors of a normalised affinity matrix. (3) Acomposite generative behaviour model is constructed which is capable of generalising from asmall training set to accommodate variations in unseen normal behaviour patterns. (4) A run-timeaccumulative anomaly measure is introduced to detect abnormal behaviour while normal behaviourpatterns are recognised when sufficient visual evidence has become available based on an onlineLikelihood Ratio Test (LRT) method. This ensures robust and reliable anomaly detection and normalbehaviour recognition at the shortest possible time. The effectiveness and robustness of our approachis demonstrated through experiments using noisy and sparse datasets collected from both indoorand outdoor surveillance scenarios. In particular, it is shown that a behaviour model trained usingan unlabelled dataset is superior to those trained using the same but labelled dataset in detectinganomaly from an unseen video. The experiments also suggest that our online LRT based behaviourrecognition approach is advantageous over the commonly used Maximum Likelihood (ML) methodin differentiating ambiguities among different behaviour classes observed online.
本文旨在解决为在线正常行为识别和异常检测应用对监控视频中捕捉到的视频行为进行建模的问题。开发了一种新颖的框架,用于自动行为剖析和在线异常采样/检测,无需对训练数据集进行任何人工标注。该框架由以下关键组件组成:(1) 基于离散场景事件检测开发了一种紧凑且有效的行为表示方法。基于使用动态贝叶斯网络 (DBN) 对每个模式进行建模来测量行为模式之间的相似度。(2) 通过一种新颖的谱聚类算法发现行为模式的自然分组,该算法对归一化亲和矩阵的特征向量进行无监督模型选择和特征选择。(3) 构建了一个复合生成行为模型,该模型能够从小训练集中进行泛化,以适应未见过的正常行为模式的变化。(4) 引入了一种运行时累积异常度量来检测异常行为,而基于在线似然比检验 (LRT) 方法,当有足够的视觉证据时识别正常行为模式。这确保了在尽可能短的时间内进行稳健可靠的异常检测和正常行为识别。通过使用从室内和室外监控场景收集的有噪声和稀疏数据集进行实验,证明了我们方法的有效性和稳健性。特别是,结果表明,在从未见过的视频中检测异常时,使用未标注数据集训练的行为模型优于使用相同但已标注数据集训练的模型。实验还表明,我们基于在线LRT的行为识别方法在区分在线观察到的不同行为类别之间的模糊性方面优于常用的最大似然 (ML) 方法。