Suppr超能文献

呈碎片状的底物:亚磷酸二阴离子对3-磷酸甘油脱氢酶(NAD⁺)的变构激活作用

A substrate in pieces: allosteric activation of glycerol 3-phosphate dehydrogenase (NAD+) by phosphite dianion.

作者信息

Tsang Wing-Yin, Amyes Tina L, Richard John P

机构信息

Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA.

出版信息

Biochemistry. 2008 Apr 22;47(16):4575-82. doi: 10.1021/bi8001743. Epub 2008 Apr 1.

Abstract

The ratio of the second-order rate constants for reduction of dihydroxyacetone phosphate (DHAP) and of the neutral truncated substrate glycolaldehyde (GLY) by glycerol 3-phosphate dehydrogenase (NAD (+), GPDH) saturated with NADH is (1.0 x 10 (6) M (-1) s (-1))/(8.7 x 10 (-3) M (-1) s (-1)) = 1.1 x 10 (8), which was used to calculate an intrinsic phosphate binding energy of at least 11.0 kcal/mol. Phosphite dianion binds very weakly to GPDH ( K d > 0.1 M), but the bound dianion strongly activates GLY toward enzyme-catalyzed reduction by NADH. Thus, the large intrinsic phosphite binding energy is expressed only at the transition state for the GPDH-catalyzed reaction. The ratio of rate constants for the phosphite-activated and the unactivated GPDH-catalyzed reduction of GLY by NADH is (4300 M (-2) s (-1))/(8.7 x 10 (-3) M (-1) s (-1)) = 5 x 10 (5) M (-1), which was used to calculate an intrinsic phosphite binding energy of -7.7 kcal/mol for the association of phosphite dianion with the transition state complex for the GPDH-catalyzed reduction of GLY. Phosphite dianion has now been shown to activate bound substrates for enzyme-catalyzed proton transfer, decarboxylation, hydride transfer, and phosphoryl transfer reactions. Structural data provide strong evidence that enzymic activation by the binding of phosphite dianion occurs at a modular active site featuring (1) a binding pocket complementary to the reactive substrate fragment which contains all the active site residues needed to catalyze the reaction of the substrate piece or of the whole substrate and (2) a phosphate/phosphite dianion binding pocket that is completed by the movement of flexible protein loop(s) to surround the nonreacting oxydianion. We propose that loop motion and associated protein conformational changes that accompany the binding of phosphite dianion and/or phosphodianion substrates lead to encapsulation of the substrate and/or its pieces in the protein interior, and to placement of the active site residues in positions where they provide optimal stabilization of the transition state for the catalyzed reaction.

摘要

用甘油3 - 磷酸脱氢酶(NAD(+),GPDH)饱和NADH还原磷酸二羟丙酮(DHAP)和中性截短底物乙醇醛(GLY)的二级速率常数之比为(1.0×10⁶ M⁻¹ s⁻¹)/(8.7×10⁻³ M⁻¹ s⁻¹) = 1.1×10⁸,该比值用于计算至少为11.0 kcal/mol的内在磷酸结合能。亚磷酸二阴离子与GPDH的结合非常弱(Kd > 0.1 M),但结合的亚磷酸二阴离子能强烈激活GLY,使其被NADH进行酶促还原。因此,大的内在亚磷酸结合能仅在GPDH催化反应的过渡态时才表现出来。亚磷酸激活的和未激活的GPDH催化NADH还原GLY的速率常数之比为(4300 M⁻² s⁻¹)/(8.7×10⁻³ M⁻¹ s⁻¹) = 5×10⁵ M⁻¹,该比值用于计算亚磷酸二阴离子与GPDH催化还原GLY的过渡态复合物缔合时的内在亚磷酸结合能为 -7.7 kcal/mol。现已表明,亚磷酸二阴离子能激活结合的底物进行酶促质子转移、脱羧、氢化物转移和磷酰基转移反应。结构数据提供了有力证据,表明亚磷酸二阴离子结合引起的酶促激活发生在一个模块化活性位点,该位点具有:(1) 一个与反应性底物片段互补的结合口袋,其中包含催化底物片段或整个底物反应所需的所有活性位点残基;(2) 一个磷酸/亚磷酸二阴离子结合口袋,通过柔性蛋白质环的移动来包围非反应性氧阴离子从而形成该口袋。我们提出,亚磷酸二阴离子和/或磷酸二阴离子底物结合时伴随的环运动和相关蛋白质构象变化导致底物和/或其片段被包裹在蛋白质内部,并使活性位点残基处于能为催化反应的过渡态提供最佳稳定作用的位置。

相似文献

1
A substrate in pieces: allosteric activation of glycerol 3-phosphate dehydrogenase (NAD+) by phosphite dianion.
Biochemistry. 2008 Apr 22;47(16):4575-82. doi: 10.1021/bi8001743. Epub 2008 Apr 1.
2
Glycerol 3-Phosphate Dehydrogenase Catalyzed Hydride Transfer: Enzyme Activation by Cofactor Pieces.
Biochemistry. 2024 Nov 5;63(21):2878-2891. doi: 10.1021/acs.biochem.4c00324. Epub 2024 Sep 25.
3
Enzymatic catalysis of proton transfer at carbon: activation of triosephosphate isomerase by phosphite dianion.
Biochemistry. 2007 May 15;46(19):5841-54. doi: 10.1021/bi700409b. Epub 2007 Apr 20.
5
Enzyme Architecture: A Startling Role for Asn270 in Glycerol 3-Phosphate Dehydrogenase-Catalyzed Hydride Transfer.
Biochemistry. 2016 Mar 15;55(10):1429-32. doi: 10.1021/acs.biochem.6b00116. Epub 2016 Mar 3.
6
Specificity in transition state binding: the Pauling model revisited.
Biochemistry. 2013 Mar 26;52(12):2021-35. doi: 10.1021/bi301491r. Epub 2013 Feb 4.
8
Phosphate binding energy and catalysis by small and large molecules.
Acc Chem Res. 2008 Apr;41(4):539-48. doi: 10.1021/ar7002013. Epub 2008 Feb 23.
9
Human Glycerol 3-Phosphate Dehydrogenase: X-ray Crystal Structures That Guide the Interpretation of Mutagenesis Studies.
Biochemistry. 2019 Feb 26;58(8):1061-1073. doi: 10.1021/acs.biochem.8b01103. Epub 2019 Jan 31.
10
Enzyme Architecture: The Role of a Flexible Loop in Activation of Glycerol-3-phosphate Dehydrogenase for Catalysis of Hydride Transfer.
Biochemistry. 2018 Jun 12;57(23):3227-3236. doi: 10.1021/acs.biochem.7b01282. Epub 2018 Feb 5.

引用本文的文献

1
Glycerol 3-Phosphate Dehydrogenase Catalyzed Hydride Transfer: Enzyme Activation by Cofactor Pieces.
Biochemistry. 2024 Nov 5;63(21):2878-2891. doi: 10.1021/acs.biochem.4c00324. Epub 2024 Sep 25.
5
Kinetics and mechanism for enzyme-catalyzed reactions of substrate pieces.
Methods Enzymol. 2023;685:95-126. doi: 10.1016/bs.mie.2023.03.002. Epub 2023 Apr 18.
6
Adenylate Kinase-Catalyzed Reactions of AMP in Pieces: Specificity for Catalysis at the Nucleoside Activator and Dianion Catalytic Sites.
Biochemistry. 2022 Dec 6;61(23):2766-2775. doi: 10.1021/acs.biochem.2c00531. Epub 2022 Nov 22.
7
Enabling Role of Ligand-Driven Conformational Changes in Enzyme Evolution.
Biochemistry. 2022 Aug 2;61(15):1533-1542. doi: 10.1021/acs.biochem.2c00178. Epub 2022 Jul 13.
9
Glycerol-3-Phosphate Dehydrogenase: The K120 and K204 Side Chains Define an Oxyanion Hole at the Enzyme Active Site.
Biochemistry. 2022 May 17;61(10):856-867. doi: 10.1021/acs.biochem.2c00053. Epub 2022 May 3.
10
The role of remote flavin adenine dinucleotide pieces in the oxidative decarboxylation catalyzed by salicylate hydroxylase.
Bioorg Chem. 2022 Feb;119:105561. doi: 10.1016/j.bioorg.2021.105561. Epub 2021 Dec 16.

本文引用的文献

1
Nature of forces between large molecules of biological interest.
Nature. 1948 May 8;161(4097):707-9. doi: 10.1038/161707a0.
2
Enzymatic catalysis of proton transfer at carbon: activation of triosephosphate isomerase by phosphite dianion.
Biochemistry. 2007 May 15;46(19):5841-54. doi: 10.1021/bi700409b. Epub 2007 Apr 20.
3
Thermodynamics of the binding of biotin and some analogues by avidin.
Biochem J. 1966 Dec;101(3):774-80. doi: 10.1042/bj1010774.
4
On the attribution and additivity of binding energies.
Proc Natl Acad Sci U S A. 1981 Jul;78(7):4046-50. doi: 10.1073/pnas.78.7.4046.
5
Crystal structures of human glycerol 3-phosphate dehydrogenase 1 (GPD1).
J Mol Biol. 2006 Mar 31;357(3):858-69. doi: 10.1016/j.jmb.2005.12.074. Epub 2006 Jan 18.
9
The structural basis for the remarkable catalytic proficiency of orotidine 5'-monophosphate decarboxylase.
Curr Opin Struct Biol. 2000 Dec;10(6):711-8. doi: 10.1016/s0959-440x(00)00148-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验