Wang Samuel J, Fuller C David, Kim Jong-Sung, Sittig Dean F, Thomas Charles R, Ravdin Peter M
Department of Radiation Medicine, KPV4, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239-3098, USA.
J Clin Oncol. 2008 May 1;26(13):2112-7. doi: 10.1200/JCO.2007.14.7934. Epub 2008 Mar 31.
The benefit of adjuvant radiotherapy (RT) for gallbladder cancer remains controversial because most published data are from small, single-institution studies. The purpose of this study was to construct a survival prediction model to enable individualized predictions of the net survival benefit of adjuvant RT for gallbladder cancer patients based on specific tumor and patient characteristics.
A multivariate Cox proportional hazards model was constructed using data from 4,180 patients with resected gallbladder cancer diagnosed from 1988 to 2003 from the Surveillance, Epidemiology, and End Results database. Patient and tumor characteristics were included as covariates and assessed for association with overall survival (OS) with and without adjuvant RT. The model was internally validated for discrimination and calibration using bootstrap resampling.
On multivariate regression analysis, the model showed that age, sex, papillary histology, stage, and adjuvant RT were significant predictors of OS. The survival prediction model demonstrated good calibration and discrimination, with a bootstrap-corrected concordance index of 0.71. The model predicts that adjuvant RT provides a survival benefit in node-positive or >or= T2 disease. A nomogram and a browser-based software tool were built from the model that can calculate individualized estimates of predicted net survival gain attributable to adjuvant RT, given specific input parameters.
In the absence of large, prospective, randomized, clinical trial data, a regression model can be used to make individualized predictions of the expected survival improvement from the addition of adjuvant RT after gallbladder cancer resection.
辅助放疗(RT)对胆囊癌的益处仍存在争议,因为大多数已发表的数据来自小型单机构研究。本研究的目的是构建一个生存预测模型,以便根据特定的肿瘤和患者特征,对胆囊癌患者辅助放疗的净生存获益进行个体化预测。
使用监测、流行病学和最终结果数据库中1988年至2003年诊断为胆囊癌且已接受手术切除的4180例患者的数据构建多变量Cox比例风险模型。将患者和肿瘤特征作为协变量纳入,并评估其与接受和未接受辅助放疗的总生存期(OS)的相关性。使用自抽样法对模型进行内部验证,以评估其区分度和校准度。
在多变量回归分析中,该模型显示年龄、性别、乳头状组织学、分期和辅助放疗是总生存期的显著预测因素。生存预测模型显示出良好的校准度和区分度,自抽样法校正后的一致性指数为0.71。该模型预测辅助放疗在淋巴结阳性或T2期及以上疾病中可带来生存获益。基于该模型构建了列线图和基于浏览器的软件工具,在给定特定输入参数的情况下,可计算辅助放疗所致预测净生存获益的个体化估计值。
在缺乏大型前瞻性随机临床试验数据的情况下,回归模型可用于对胆囊癌切除术后辅助放疗带来的预期生存改善进行个体化预测。