Dash Ranjan K, Li Yanjun, Kim Jaeyeon, Saidel Gerald M, Cabrera Marco E
Center for Modeling Integrated Metabolic Systems and Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA.
IEEE Trans Biomed Eng. 2008 Apr;55(4):1298-318. doi: 10.1109/TBME.2007.913422.
Skeletal muscle plays a major role in the regulation of whole-body energy metabolism during physiological stresses such as ischemia, hypoxia, and exercise. Current experimental techniques provide relatively little in vivo data on dynamic responses of metabolite concentrations and metabolic fluxes in skeletal muscle to such physiological stimuli. As a complementary approach to experimental measurements and as a framework for quantitatively analyzing available in vivo data, a physiologically based model of skeletal muscle cellular metabolism and energetics is developed. This model, which incorporates key transport and reaction processes, is based on dynamic mass balances of 30 chemical species in capillary (blood) and tissue (cell) domains. The reaction fluxes in the cellular domain are expressed in terms of a generalized Michaelis?Menten equation involving energy controller ratios ATP/ADP and ATP/ADP and NADH/NAD+ . This formalism introduces a large number of unknown parameters ( approximately 90). Estimating these parameters from in vivo sparse data and evaluating dynamic sensitivities of the model outputs with respect to these parameters is a challenging problem. Parameter estimation is accomplished using an efficient, nonlinear, constraint-based, optimization algorithm that minimizes differences between available experimental data and corresponding model outputs by explicitly utilizing equality constraints on resting fluxes and concentrations. With the estimated parameter values, the model is able to simulate dynamic responses to reduced blood flow (ischemia) of key metabolite concentrations and metabolic fluxes, both measured and nonmeasured. A general parameter sensitivity analysis is carried out to determine and characterize the parameters having the most and least effects on the measured outputs.
在诸如局部缺血、缺氧和运动等生理应激过程中,骨骼肌在全身能量代谢调节中发挥着重要作用。目前的实验技术提供的关于骨骼肌中代谢物浓度和代谢通量对这种生理刺激的动态反应的体内数据相对较少。作为实验测量的一种补充方法以及定量分析现有体内数据的一个框架,开发了一种基于生理学的骨骼肌细胞代谢和能量学模型。该模型纳入了关键的转运和反应过程,基于毛细血管(血液)和组织(细胞)区域中30种化学物质的动态质量平衡。细胞区域中的反应通量用一个广义的米氏方程表示,该方程涉及能量控制比率ATP/ADP和ATP/ADP以及NADH/NAD+。这种形式主义引入了大量未知参数(约90个)。从体内稀疏数据估计这些参数并评估模型输出相对于这些参数的动态敏感性是一个具有挑战性的问题。参数估计使用一种高效的、基于约束的非线性优化算法来完成,该算法通过明确利用静息通量和浓度的等式约束来最小化可用实验数据与相应模型输出之间的差异。利用估计的参数值,该模型能够模拟关键代谢物浓度和代谢通量对血流减少(局部缺血)的动态反应,包括已测量的和未测量的。进行了一般的参数敏感性分析,以确定和表征对测量输出影响最大和最小的参数。