Suppr超能文献

β-1,4-半乳糖基转移酶的结构与功能

Structure and function of beta -1,4-galactosyltransferase.

作者信息

Qasba Pradman K, Ramakrishnan Boopathy, Boeggeman Elizabeth

机构信息

Structural Glycobiology Section, CCRNP, NCI-Frederick, Building 469, Room 221, Frederick, Maryland 21702, USA.

出版信息

Curr Drug Targets. 2008 Apr;9(4):292-309. doi: 10.2174/138945008783954943.

Abstract

Beta-1,4-galactosylransferase (beta4Gal-T1) participates in the synthesis of Galbeta1-4-GlcNAc-disaccharide unit of glycoconjugates. It is a trans-Golgi glycosyltransferase (Glyco-T) with a type II membrane protein topology, a short N-terminal cytoplasmic domain, a membrane-spanning region, as well as a stem and a C-terminal catalytic domain facing the trans-Golgi-lumen. Its hydrophobic membrane-spanning region, like that of other Glyco-T, has a shorter length compared to plasma membrane proteins, an important feature for its retention in the trans-Golgi. The catalytic domain has two flexible loops, a long and a small one. The primary metal binding site is located at the N-terminal hinge region of the long flexible loop. Upon binding of metal ion and sugar-nucleotide, the flexible loops undergo a marked conformational change, from an open to a closed conformation. Conformational change simultaneously creates at the C-terminal region of the flexible loop an oligosaccharide acceptor binding site that did not exist before. The loop acts as a lid covering the bound donor substrate. After completion of the transfer of the glycosyl unit to the acceptor, the saccharide product is ejected; the loop reverts to its native conformation to release the remaining nucleotide moiety. The conformational change in beta4Gal-T1 also creates the binding site for a mammary gland-specific protein, alpha-lactalbumin (LA), which changes the acceptor specificity of the enzyme toward glucose to synthesize lactose during lactation. The specificity of the sugar donor is generally determined by a few residues in the sugar-nucleotide binding pocket of Glyco-T, conserved among the family members from different species. Mutation of these residues has allowed us to design new and novel glycosyltransferases, with broader or requisite donor and acceptor specificities, and to synthesize specific complex carbohydrates as well as specific inhibitors for these enzymes.

摘要

β-1,4-半乳糖基转移酶(β4Gal-T1)参与糖缀合物中Galβ1-4-GlcNAc二糖单元的合成。它是一种反式高尔基体糖基转移酶(糖基-T),具有II型膜蛋白拓扑结构,一个短的N端细胞质结构域、一个跨膜区域,以及一个柄部和一个面向反式高尔基体腔的C端催化结构域。其疏水跨膜区域与其他糖基-T一样,与质膜蛋白相比长度较短,这是其保留在反式高尔基体中的一个重要特征。催化结构域有两个柔性环,一个长环和一个小环。主要金属结合位点位于长柔性环的N端铰链区。在金属离子和糖核苷酸结合后,柔性环经历显著的构象变化,从开放构象转变为封闭构象。构象变化同时在柔性环的C端区域产生一个之前不存在的寡糖受体结合位点。该环充当覆盖结合的供体底物的盖子。在糖基单元转移到受体完成后,糖产物被排出;环恢复到其天然构象以释放剩余的核苷酸部分。β4Gal-T1中的构象变化还产生了一种乳腺特异性蛋白α-乳白蛋白(LA)的结合位点,该蛋白在哺乳期改变了酶对葡萄糖的受体特异性以合成乳糖。糖供体的特异性通常由糖基-T的糖核苷酸结合口袋中的几个残基决定,这些残基在来自不同物种的家族成员中是保守的。这些残基的突变使我们能够设计新的糖基转移酶,具有更广泛或所需的供体和受体特异性,并合成特定的复合碳水化合物以及这些酶的特异性抑制剂。

相似文献

1
Structure and function of beta -1,4-galactosyltransferase.
Curr Drug Targets. 2008 Apr;9(4):292-309. doi: 10.2174/138945008783954943.
2
Structure and catalytic cycle of beta-1,4-galactosyltransferase.
Curr Opin Struct Biol. 2004 Oct;14(5):593-600. doi: 10.1016/j.sbi.2004.09.006.
3
Substrate-induced conformational changes in glycosyltransferases.
Trends Biochem Sci. 2005 Jan;30(1):53-62. doi: 10.1016/j.tibs.2004.11.005.
4
Beta-1,4-galactosyltransferase and lactose synthase: molecular mechanical devices.
Biochem Biophys Res Commun. 2002 Mar 15;291(5):1113-8. doi: 10.1006/bbrc.2002.6506.
8
Studies on the metal binding sites in the catalytic domain of beta1,4-galactosyltransferase.
Glycobiology. 2002 Jul;12(7):395-407. doi: 10.1093/glycob/cwf045.
9
Structural snapshots of beta-1,4-galactosyltransferase-I along the kinetic pathway.
J Mol Biol. 2006 Apr 14;357(5):1619-33. doi: 10.1016/j.jmb.2006.01.088. Epub 2006 Feb 9.
10
Crystal structure of the catalytic domain of Drosophila beta1,4-Galactosyltransferase-7.
J Biol Chem. 2010 May 14;285(20):15619-15626. doi: 10.1074/jbc.M109.099564. Epub 2010 Mar 17.

引用本文的文献

1
Glycosyltransferases: glycoengineers in human milk oligosaccharide synthesis and manufacturing.
Front Mol Biosci. 2025 Apr 30;12:1587602. doi: 10.3389/fmolb.2025.1587602. eCollection 2025.
3
Molecular Mechanisms Underlying the Loop-Closing Dynamics of β-1,4 Galactosyltransferase 1.
J Chem Inf Model. 2025 Jan 13;65(1):390-401. doi: 10.1021/acs.jcim.4c02010. Epub 2024 Dec 31.
4
Progress in pH-Sensitive sensors: essential tools for organelle pH detection, spotlighting mitochondrion and diverse applications.
Front Pharmacol. 2024 Jan 10;14:1339518. doi: 10.3389/fphar.2023.1339518. eCollection 2023.
8
Connexin 43 mediated collective cell migration is independent of Golgi orientation.
Biol Open. 2023 Oct 15;12(10). doi: 10.1242/bio.060006. Epub 2023 Oct 30.
10
Chemical, Molecular, and Single-nucleus Analysis Reveal Chondroitin Sulfate Proteoglycan Aberrancy in Fibrolamellar Carcinoma.
Cancer Res Commun. 2022 Jul 18;2(7):663-678. doi: 10.1158/2767-9764.CRC-21-0177. eCollection 2022 Jul.

本文引用的文献

1
Role of a single amino acid in the evolution of glycans of invertebrates and vertebrates.
J Mol Biol. 2007 Jan 19;365(3):570-6. doi: 10.1016/j.jmb.2006.10.034. Epub 2006 Oct 14.
2
Structural snapshots of beta-1,4-galactosyltransferase-I along the kinetic pathway.
J Mol Biol. 2006 Apr 14;357(5):1619-33. doi: 10.1016/j.jmb.2006.01.088. Epub 2006 Feb 9.
5
Altered glycan structures: the molecular basis of congenital disorders of glycosylation.
Curr Opin Struct Biol. 2005 Oct;15(5):490-8. doi: 10.1016/j.sbi.2005.08.010.
6
Structures and mechanisms of glycosyltransferases.
Glycobiology. 2006 Feb;16(2):29R-37R. doi: 10.1093/glycob/cwj016. Epub 2005 Jul 21.
7
Regulation of protein function by glycosaminoglycans--as exemplified by chemokines.
Annu Rev Biochem. 2005;74:385-410. doi: 10.1146/annurev.biochem.72.121801.161747.
9
Substrate-induced conformational changes in glycosyltransferases.
Trends Biochem Sci. 2005 Jan;30(1):53-62. doi: 10.1016/j.tibs.2004.11.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验