Suppr超能文献

利用水样中的环境DNA进行物种检测。

Species detection using environmental DNA from water samples.

作者信息

Ficetola Gentile Francesco, Miaud Claude, Pompanon François, Taberlet Pierre

机构信息

Laboratoire d'Ecologie Alpine, CNRS-UMR 5553, Université Joseph Fourier, Grenoble Cedex 09, France.

出版信息

Biol Lett. 2008 Aug 23;4(4):423-5. doi: 10.1098/rsbl.2008.0118.

Abstract

The assessment of species distribution is a first critical phase of biodiversity studies and is necessary to many disciplines such as biogeography, conservation biology and ecology. However, several species are difficult to detect, especially during particular time periods or developmental stages, potentially biasing study outcomes. Here we present a novel approach, based on the limited persistence of DNA in the environment, to detect the presence of a species in fresh water. We used specific primers that amplify short mitochondrial DNA sequences to track the presence of a frog (Rana catesbeiana) in controlled environments and natural wetlands. A multi-sampling approach allowed for species detection in all environments where it was present, even at low densities. The reliability of the results was demonstrated by the identification of amplified DNA fragments, using traditional sequencing and parallel pyrosequencing techniques. As the environment can retain the molecular imprint of inhabiting species, our approach allows the reliable detection of secretive organisms in wetlands without direct observation. Combined with massive sequencing and the development of DNA barcodes that enable species identification, this approach opens new perspectives for the assessment of current biodiversity from environmental samples.

摘要

物种分布评估是生物多样性研究的首个关键阶段,对生物地理学、保护生物学和生态学等许多学科而言都至关重要。然而,有几种物种难以被检测到,尤其是在特定时间段或发育阶段,这可能会使研究结果产生偏差。在此,我们基于环境中DNA的有限持久性,提出一种新颖的方法来检测淡水中某一物种的存在。我们使用特定引物扩增线粒体短DNA序列,以追踪牛蛙(Rana catesbeiana)在受控环境和天然湿地中的存在情况。采用多次采样方法能够在该物种存在的所有环境中检测到它,即便其密度很低。通过使用传统测序和平行焦磷酸测序技术鉴定扩增的DNA片段,证明了结果的可靠性。由于环境能够保留栖息物种的分子印记,我们的方法无需直接观察就能可靠地检测湿地中的隐匿生物。结合大规模测序以及能够进行物种鉴定的DNA条形码的开发,这种方法为从环境样本评估当前生物多样性开辟了新的前景。

相似文献

1
Species detection using environmental DNA from water samples.
Biol Lett. 2008 Aug 23;4(4):423-5. doi: 10.1098/rsbl.2008.0118.
2
Persistence of environmental DNA in freshwater ecosystems.
PLoS One. 2011;6(8):e23398. doi: 10.1371/journal.pone.0023398. Epub 2011 Aug 8.
3
Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding.
Mol Ecol. 2016 Feb;25(4):929-42. doi: 10.1111/mec.13428. Epub 2016 Jan 18.
6
Degradation and dispersion limit environmental DNA detection of rare amphibians in wetlands: Increasing efficacy of sampling designs.
Sci Total Environ. 2018 Aug 15;633:695-703. doi: 10.1016/j.scitotenv.2018.02.295. Epub 2018 Mar 28.
7
Spatial Representativeness of Environmental DNA Metabarcoding Signal for Fish Biodiversity Assessment in a Natural Freshwater System.
PLoS One. 2016 Jun 30;11(6):e0157366. doi: 10.1371/journal.pone.0157366. eCollection 2016.
8
Using two classification schemes to develop vegetation indices of biological integrity for wetlands in West Virginia, USA.
Environ Monit Assess. 2010 Nov;170(1-4):555-69. doi: 10.1007/s10661-009-1257-2. Epub 2009 Dec 23.
9
Monitoring endangered freshwater biodiversity using environmental DNA.
Mol Ecol. 2012 Jun;21(11):2565-73. doi: 10.1111/j.1365-294X.2011.05418.x. Epub 2011 Dec 13.

引用本文的文献

3
Can eDNA Replace Trawl Surveys for Estuarine Species Distribution Modeling: Insights From in the Yangtze River Estuary.
Ecol Evol. 2025 Aug 21;15(8):e71854. doi: 10.1002/ece3.71854. eCollection 2025 Aug.
5
Artificial Waterbodies: A Valuable Source of eDNA for Detecting Threatened Birds.
Ecol Evol. 2025 Jun 5;15(6):e71509. doi: 10.1002/ece3.71509. eCollection 2025 Jun.
6
8
Investigating passive eDNA samplers and submergence times for marine surveillance.
PeerJ. 2025 Mar 6;13:e19043. doi: 10.7717/peerj.19043. eCollection 2025.

本文引用的文献

1
Population genetics reveals origin and number of founders in a biological invasion.
Mol Ecol. 2008 Feb;17(3):773-82. doi: 10.1111/j.1365-294X.2007.03622.x. Epub 2008 Jan 8.
2
Ancient biomolecules from deep ice cores reveal a forested southern Greenland.
Science. 2007 Jul 6;317(5834):111-4. doi: 10.1126/science.1141758.
3
Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding.
Nucleic Acids Res. 2007;35(3):e14. doi: 10.1093/nar/gkl938. Epub 2006 Dec 14.
5
Genome sequencing in microfabricated high-density picolitre reactors.
Nature. 2005 Sep 15;437(7057):376-80. doi: 10.1038/nature03959. Epub 2005 Jul 31.
7
Environmental genome shotgun sequencing of the Sargasso Sea.
Science. 2004 Apr 2;304(5667):66-74. doi: 10.1126/science.1093857. Epub 2004 Mar 4.
8
Molecular caving.
Curr Biol. 2003 Sep 16;13(18):R693-5. doi: 10.1016/j.cub.2003.08.039.
9
Diverse plant and animal genetic records from Holocene and Pleistocene sediments.
Science. 2003 May 2;300(5620):791-5. doi: 10.1126/science.1084114. Epub 2003 Apr 17.
10
Urine collected in the field as a source of DNA for species and individual identification.
Mol Ecol. 2000 Dec;9(12):2150-2. doi: 10.1046/j.1365-294x.2000.11142.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验