Winkler J, Hoerauf H
Labor, Landesbetrieb Hessisches Landeslabor.
Klin Monbl Augenheilkd. 2008 Apr;225(4):269-75. doi: 10.1055/s-2008-1027286.
In vivo animal experiments have shown that the cytoskeleton plays a crucial role in case of structural changes after an induced retinal detachment. This study attempts to clarify whether a retinal organ culture could serve as an in vitro model for retinal detachment and thus represent an alternative to animal experiments. The main focus of this publication lies on the early cytoskeletal changes after retinal detachment.
Porcine retinas were mounted on special carriers, cultured for one or two weeks and examined by standard immunohistological (vimentin, GFAP, alpha-tubulin), as well as electron microscopical procedures.
The cytoskeletal changes revealed similar spatio-temporal pattern compared with in vivo induced retinal detachments. In addition, it was shown that microtubules might play a crucial role in the early phase of gliosis, i. e., prior to a subretinal invasion by Müller cell extensions.
The presented organ culture model will be used to unravel the largely unknown initial reactions of retinal gliosis, focusing on subcellular changes localised at the outer limiting membrane. The intracellular transport system of microtubules might play a key role in these processes.