Chuang Jessica I, Boxer Steven G, Holten Dewey, Kirmaier Christine
Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA.
J Phys Chem B. 2008 May 1;112(17):5487-99. doi: 10.1021/jp800082m. Epub 2008 Apr 11.
Subpicosecond time-resolved absorption measurements at 77 K on two reaction center (RC) mutants of Rhodobacter capsulatus are reported. In the D(LL) mutant the D helix of the M subunit has been substituted with the D helix from the L subunit, and in the D(LL)-FY(L)F(M) mutant, three additional mutations are incorporated that facilitate electron transfer to the M side of the RC. In both cases the helix swap has been shown to yield isolated RCs that are devoid of the native bacteriopheophytin electron carrier HL (Chuang, J. I.; Boxer, S. G.; Holten, D.; Kirmaier, C. Biochemistry 2006, 45, 3845-3851). For D(LL), depending whether the detergent Deriphat 160-C or N-lauryl-N,N-dimethylamine-N-oxide (LDAO) is used to suspend the RCs, the excited state of the primary electron donor (P*) decays to the ground state with an average lifetime at 77 K of 330 or 170 ps, respectively; however, in both cases the time constant obtained from single-exponential fits varies markedly as a function of the probe wavelength. These findings on the D(LL) RC are most easily explained in terms of a heterogeneous population of RCs. Similarly, the complex results for D(LL)-FY(L)F(M) in Deriphat-glycerol glass at 77 K are most simply explained using a model that involves (minimally) two distinct populations of RCs with very different photochemistry. Within this framework, in 50% of the D(LL)-FY(L)F(M) RCs in Deriphat-glycerol glass at 77 K, P* deactivates to the ground state with a time constant of approximately 400 ps, similar to the deactivation of P* in the D(LL) mutant at 77 K. In the other 50% of D(LL)-FY(L)F(M) RCs, P* has a 35 ps lifetime and decays via electron transfer to the M branch, giving P+HM- in high yield (> or =80%). This result indicates that P* --> P(+)H(M)(-) is roughly a factor of 2 faster at 77 K than at 295 K. In alternative homogeneous models the rate of this M-side electron-transfer process is the same or up to 2-fold slower at low temperature. A 2-fold increase in rate with a reduction in temperature is the same behavior found for the overall L-side process P* --> P(+)H(L)(-) in wild-type RCs. Our results suggest that, as for electron transfer on the L side, the M-side electron-transfer reaction P* --> P(+)H(M)(-) is an activationless process.
报道了在77K下对荚膜红细菌两个反应中心(RC)突变体进行的亚皮秒时间分辨吸收测量。在D(LL)突变体中,M亚基的D螺旋被L亚基的D螺旋取代,而在D(LL)-FY(L)F(M)突变体中,又引入了另外三个促进电子转移到RC的M侧的突变。在这两种情况下,螺旋交换都已被证明能产生不含天然细菌脱镁叶绿素电子载体HL的分离RC(庄,J.I.;博克瑟,S.G.;霍尔滕,D.;基迈尔,C.《生物化学》2006年,45卷,3845 - 3851页)。对于D(LL),根据使用去污剂Deriphat 160 - C还是N - 月桂基 - N,N - 二甲基胺 - N - 氧化物(LDAO)来悬浮RC,初级电子供体(P*)的激发态分别以77K下平均寿命330或170ps衰减到基态;然而,在这两种情况下,从单指数拟合得到的时间常数都随探测波长显著变化。关于D(LL) RC的这些发现最容易用RC的异质群体来解释。同样,对于77K下Deriphat - 甘油玻璃中的D(LL)-FY(L)F(M)的复杂结果,最简单的解释是使用一个(至少)涉及具有非常不同光化学的两个不同RC群体的模型。在此框架内,在77K下Deriphat - 甘油玻璃中50%的D(LL)-FY(L)F(M) RC中,P以约400ps的时间常数失活回到基态,这与77K下D(LL)突变体中P的失活情况类似。在另外50%的D(LL)-FY(L)F(M) RC中,P有35ps的寿命,并通过电子转移到M分支而衰减,高产率(≥80%)地产生P + HM - 。这一结果表明,在77K时P→P(+)H(M)(-)的速度比在295K时快约2倍。在其他均匀模型中,这个M侧电子转移过程的速率在低温下相同或慢至2倍。速率随温度降低而增加2倍与野生型RC中整个L侧过程P*→P(+)H(L)(-)的行为相同。我们的结果表明,就像L侧的电子转移一样,M侧电子转移反应P*→P(+)H(M)(-)是一个无活化过程。