Suppr超能文献

先验知识增强了类别维度效应。

Prior knowledge enhances the category dimensionality effect.

作者信息

Hoffman Aaron B, Harris Harlan D, Murphy Gregory L

机构信息

New York University, New York, New York, USA.

出版信息

Mem Cognit. 2008 Mar;36(2):256-70. doi: 10.3758/mc.36.2.256.

Abstract

A study of the combined influence of prior knowledge and stimulus dimensionality on category learning was conducted. Subjects learned category structures with the same number of necessary dimensions but with more or fewer additional, redundant dimensions and with either knowledge-related or knowledge-unrelated features. Minimal-learning models predict that all subjects, regardless of condition, either should learn the same number of dimensions or should respond more slowly to each dimension. Despite similar learning rates and response times, subjects learned more features in the high-dimensional than in the low-dimensional condition. Furthermore, prior knowledge interacted with dimensionality, increasing what was learned, especially in the high-dimensional case. A second experiment confirmed that the participants did, in fact, learn more features during the training phase, rather than simply inferring them at test. These effects can be explained by direct associations among features (representing prior knowledge), combined with feedback between features and the category label, as was shown by simulations of the knowledge resonance, or KRES, model of category learning.

摘要

开展了一项关于先验知识和刺激维度对类别学习的综合影响的研究。受试者学习具有相同数量必要维度但附加冗余维度或多或少的类别结构,且这些结构具有与知识相关或与知识无关的特征。最小学习模型预测,所有受试者无论处于何种条件下,要么应学习相同数量的维度,要么对每个维度的反应应该更慢。尽管学习速率和反应时间相似,但受试者在高维度条件下比在低维度条件下学习到更多特征。此外,先验知识与维度相互作用,增加了所学内容,尤其是在高维度情况下。第二个实验证实,参与者实际上在训练阶段学习到了更多特征,而不是仅仅在测试时进行推断。这些效应可以通过特征之间的直接关联(代表先验知识),再结合特征与类别标签之间的反馈来解释,类别学习的知识共振(KRES)模型的模拟结果表明了这一点。

相似文献

1
Prior knowledge enhances the category dimensionality effect.
Mem Cognit. 2008 Mar;36(2):256-70. doi: 10.3758/mc.36.2.256.
2
Category dimensionality and feature knowledge: when more features are learned as easily as fewer.
J Exp Psychol Learn Mem Cogn. 2006 Mar;32(2):301-315. doi: 10.1037/0278-7393.32.3.301.
3
A knowledge-resonance (KRES) model of category learning.
Psychon Bull Rev. 2003 Dec;10(4):759-84. doi: 10.3758/bf03196543.
4
How prior knowledge affects selective attention during category learning: an eyetracking study.
Mem Cognit. 2011 May;39(4):649-65. doi: 10.3758/s13421-010-0050-3.
6
Feature distribution and background knowledge in category learning.
Q J Exp Psychol A. 2000 Nov;53(4):962-82. doi: 10.1080/713755932.
7
Classification versus inference learning contrasted with real-world categories.
Mem Cognit. 2011 Jul;39(5):764-77. doi: 10.3758/s13421-010-0058-8.
8
Prior knowledge and exemplar frequency.
Mem Cognit. 2008 Oct;36(7):1335-50. doi: 10.3758/MC.36.7.1335.
9
Learning mode and exemplar sequencing in unsupervised category learning.
J Exp Psychol Learn Mem Cogn. 2009 May;35(3):731-741. doi: 10.1037/a0015005.
10
Theory-based categorization under speeded conditions.
Mem Cognit. 2006 Jul;34(5):1102-11. doi: 10.3758/bf03193256.

引用本文的文献

2
Do salient features overshadow learning of other features in category learning?
J Exp Psychol Anim Learn Cogn. 2017 Jul;43(3):219-230. doi: 10.1037/xan0000139. Epub 2017 May 4.
3
Is there an exemplar theory of concepts?
Psychon Bull Rev. 2016 Aug;23(4):1035-42. doi: 10.3758/s13423-015-0834-3.
4
Conceptual and linguistic representations of kinds and classes.
Cogn Sci. 2012 Sep-Oct;36(7):1224-50. doi: 10.1111/j.1551-6709.2012.01254.x. Epub 2012 Jun 1.

本文引用的文献

1
Fast-mapping children vs. slow-mapping adults: Assumptions about words and concepts in two literatures.
Behav Brain Sci. 2001 Dec;24(6):1112-1113. doi: 10.1017/S0140525X01310130.
2
Blocking in category learning.
J Exp Psychol Gen. 2007 Nov;136(4):685-99. doi: 10.1037/0096-3445.136.4.685.
3
Learning algorithms and probability distributions in feed-forward and feed-back networks.
Proc Natl Acad Sci U S A. 1987 Dec;84(23):8429-33. doi: 10.1073/pnas.84.23.8429.
4
Category dimensionality and feature knowledge: when more features are learned as easily as fewer.
J Exp Psychol Learn Mem Cogn. 2006 Mar;32(2):301-315. doi: 10.1037/0278-7393.32.3.301.
5
Global model analysis by parameter space partitioning.
Psychol Rev. 2006 Jan;113(1):57-83. doi: 10.1037/0033-295X.113.1.57.
6
SUSTAIN: a network model of category learning.
Psychol Rev. 2004 Apr;111(2):309-32. doi: 10.1037/0033-295X.111.2.309.
7
A knowledge-resonance (KRES) model of category learning.
Psychon Bull Rev. 2003 Dec;10(4):759-84. doi: 10.3758/bf03196543.
8
Category use and category learning.
Psychol Bull. 2003 Jul;129(4):592-613. doi: 10.1037/0033-2909.129.4.592.
9
Rule-based extrapolation in perceptual categorization.
Psychon Bull Rev. 2002 Mar;9(1):160-8. doi: 10.3758/bf03196273.
10
Abstract coherent categories.
J Exp Psychol Learn Mem Cogn. 2001 Sep;27(5):1261-75. doi: 10.1037//0278-7393.27.5.1261.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验