Suppr超能文献

一种基于交流电动学的新型微流体驱动器。

A novel microfluidic driver via AC electrokinetics.

作者信息

Kuo Ching-Te, Liu Cheng-Hsien

机构信息

Department of Power Mechanical Engineering, National Tsing-Hua University, Hsinchu, Taiwan 30043, Republic of China.

出版信息

Lab Chip. 2008 May;8(5):725-33. doi: 10.1039/b719968f. Epub 2008 Mar 18.

Abstract

A novel ac electrokinetic microfluidic driver based on alternating current electro-osmosis flow induced by asymmetrically capacitance/chemistry-modulated microelectrode arrays has been successfully developed and demonstrated. Asymmetric capacitance modulation (ACM) is made of comb electrode arrays and parts of individual electrode surfaces are modulated/deposited with a SiO(2) dielectric layer. This proposed design can be utilized to shift the optimal operation frequency of maximum velocity to a higher frequency to minimize electrolytic bubble generation and enhance micropumping performance. The pumping velocity, described in this paper, is measured via the tracing of microbeads and is a function of applied potential, signal frequency, buffer concentration, and dielectric layer thickness. A maximum pumping velocity up to 290 microm s(-1) in 5 mM buffer solution with the applied potential of 10 Vpp is observed in our prototype device, and the estimated maximum flow rate is up to 26.1 microl h(-1). This is the first successful demonstration regarding bubble-free ac electrokinetic micropumping via such asymmetrically capacitance-modulated electrode arrays. Design, simulation, microfabrication, experimental result, and theoretical model are described in this paper to characterize and exhibit the performance of the proposed novel bubble-free ac electrokinetic microfluidic driver.

摘要

一种基于非对称电容/化学调制微电极阵列诱导的交流电渗流的新型交流电动力学微流控驱动器已成功开发并得到验证。非对称电容调制(ACM)由梳状电极阵列构成,部分单个电极表面用SiO(2)介电层进行调制/沉积。这种设计可用于将最大速度的最佳工作频率转移到更高频率,以最大限度地减少电解气泡的产生并提高微泵性能。本文所述的泵送速度通过微珠追踪来测量,它是施加电势、信号频率、缓冲液浓度和介电层厚度的函数。在我们的原型装置中,在5 mM缓冲溶液中施加10 Vpp的电势时,观察到最大泵送速度高达290微米/秒,估计最大流速高达26.1微升/小时。这是首次通过这种非对称电容调制电极阵列成功实现无气泡交流电动力学微泵的演示。本文描述了设计、模拟、微加工、实验结果和理论模型,以表征和展示所提出的新型无气泡交流电动力学微流控驱动器的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验