Wilkinson Kevin A, Gorelick Robert J, Vasa Suzy M, Guex Nicolas, Rein Alan, Mathews David H, Giddings Morgan C, Weeks Kevin M
Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, United States of America.
PLoS Biol. 2008 Apr 29;6(4):e96. doi: 10.1371/journal.pbio.0060096.
Replication and pathogenesis of the human immunodeficiency virus (HIV) is tightly linked to the structure of its RNA genome, but genome structure in infectious virions is poorly understood. We invent high-throughput SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) technology, which uses many of the same tools as DNA sequencing, to quantify RNA backbone flexibility at single-nucleotide resolution and from which robust structural information can be immediately derived. We analyze the structure of HIV-1 genomic RNA in four biologically instructive states, including the authentic viral genome inside native particles. Remarkably, given the large number of plausible local structures, the first 10% of the HIV-1 genome exists in a single, predominant conformation in all four states. We also discover that noncoding regions functioning in a regulatory role have significantly lower (p-value < 0.0001) SHAPE reactivities, and hence more structure, than do viral coding regions that function as the template for protein synthesis. By directly monitoring protein binding inside virions, we identify the RNA recognition motif for the viral nucleocapsid protein. Seven structurally homologous binding sites occur in a well-defined domain in the genome, consistent with a role in directing specific packaging of genomic RNA into nascent virions. In addition, we identify two distinct motifs that are targets for the duplex destabilizing activity of this same protein. The nucleocapsid protein destabilizes local HIV-1 RNA structure in ways likely to facilitate initial movement both of the retroviral reverse transcriptase from its tRNA primer and of the ribosome in coding regions. Each of the three nucleocapsid interaction motifs falls in a specific genome domain, indicating that local protein interactions can be organized by the long-range architecture of an RNA. High-throughput SHAPE reveals a comprehensive view of HIV-1 RNA genome structure, and further application of this technology will make possible newly informative analysis of any RNA in a cellular transcriptome.
人类免疫缺陷病毒(HIV)的复制和发病机制与其RNA基因组的结构紧密相关,但人们对感染性病毒粒子中的基因组结构却知之甚少。我们发明了高通量SHAPE(通过引物延伸分析的选择性2'-羟基酰化)技术,该技术使用了许多与DNA测序相同的工具,能够在单核苷酸分辨率下量化RNA主链的灵活性,并能立即从中获得可靠的结构信息。我们分析了HIV-1基因组RNA在四种具有生物学指导意义的状态下的结构,包括天然病毒粒子内的真实病毒基因组。值得注意的是,考虑到存在大量可能的局部结构,HIV-1基因组的前10%在所有四种状态下都以单一的主要构象存在。我们还发现,起调节作用的非编码区的SHAPE反应性显著低于(p值<0.0001)作为蛋白质合成模板的病毒编码区,因此具有更多的结构。通过直接监测病毒粒子内的蛋白质结合情况,我们确定了病毒核衣壳蛋白的RNA识别基序。七个结构同源的结合位点出现在基因组中一个明确的结构域内,这与指导基因组RNA特异性包装到新生病毒粒子中的作用一致。此外,我们确定了两个不同的基序,它们是同一蛋白质双链解链活性的作用靶点。核衣壳蛋白以可能促进逆转录病毒逆转录酶从其tRNA引物起始的初始移动以及编码区核糖体移动的方式破坏局部HIV-1 RNA结构。三个核衣壳相互作用基序中的每一个都位于特定的基因组结构域内,这表明局部蛋白质相互作用可以由RNA的长程结构组织起来。高通量SHAPE揭示了HIV-1 RNA基因组结构的全貌,这项技术的进一步应用将使对细胞转录组中任何RNA进行新的信息丰富的分析成为可能。