Corso J J, Sharon E, Dube S, El-Saden S, Sinha U, Yuille A
Department of Radiological Sciences, University of California-Los Angeles, Los Angeles, CA 90095, USA.
IEEE Trans Med Imaging. 2008 May;27(5):629-40. doi: 10.1109/TMI.2007.912817.
We present a new method for automatic segmentation of heterogeneous image data that takes a step toward bridging the gap between bottom-up affinity-based segmentation methods and top-down generative model based approaches. The main contribution of the paper is a Bayesian formulation for incorporating soft model assignments into the calculation of affinities, which are conventionally model free. We integrate the resulting model-aware affinities into the multilevel segmentation by weighted aggregation algorithm, and apply the technique to the task of detecting and segmenting brain tumor and edema in multichannel magnetic resonance (MR) volumes. The computationally efficient method runs orders of magnitude faster than current state-of-the-art techniques giving comparable or improved results. Our quantitative results indicate the benefit of incorporating model-aware affinities into the segmentation process for the difficult case of glioblastoma multiforme brain tumor.
我们提出了一种用于自动分割异质图像数据的新方法,该方法朝着弥合基于自下而上亲和度的分割方法与基于自上而下生成模型的方法之间的差距迈出了一步。本文的主要贡献是一种贝叶斯公式,用于将软模型分配纳入亲和度计算中,而亲和度计算通常是无模型的。我们通过加权聚合算法将所得的模型感知亲和度集成到多级分割中,并将该技术应用于多通道磁共振(MR)体积中脑肿瘤和水肿的检测与分割任务。这种计算效率高的方法比当前最先进的技术运行速度快几个数量级,且能给出相当或更好的结果。我们的定量结果表明,对于多形性胶质母细胞瘤脑肿瘤这种困难情况,在分割过程中纳入模型感知亲和度是有益的。