Mustelin Linda, Pietiläinen Kirsi H, Rissanen Aila, Sovijärvi Anssi R, Piirilä Päivi, Naukkarinen Jussi, Peltonen Leena, Kaprio Jaakko, Yki-Järvinen Hannele
Department of Laboratory Medicine, Division of Clinical Physiology and Nuclear Medicine, Helsinki University Central Hospital, Helsinki, Finland.
Am J Physiol Endocrinol Metab. 2008 Jul;295(1):E148-54. doi: 10.1152/ajpendo.00580.2007. Epub 2008 May 6.
Defects in expression of genes of oxidative phosphorylation in mitochondria have been suggested to be a key pathophysiological feature in familial insulin resistance. We examined whether such defects can arise from lifestyle-related factors alone. Fourteen obesity-discordant (BMI difference 5.2 +/- 1.8 kg/m(2)) and 10 concordant (1.0 +/- 0.7 kg/m(2)) monozygotic (MZ) twin pairs aged 24-27 yr were identified among 658 MZ pairs in the population-based FinnTwin16 study. Whole body insulin sensitivity was measured using the euglycemic hyperinsulinemic clamp technique. Transcript profiles of mitochondrial genes were compared using microarray data of fat biopsies from discordant twins. Body composition of twins was determined using DEXA and maximal oxygen uptake (Vo(2max)) and working capacity (W(max)) using a bicycle ergometer exercise test with gas exchange analysis. The obese cotwins had lower insulin sensitivity than their nonobese counterparts (M value 6.1 +/- 2.0 vs. 9.2 +/- 3.2 mg x kg LBM(-1) x min(-1), P < 0.01). Transcript levels of genes involved in the oxidative phosphorylation pathway (GO:0006119) in adipose tissue were lower (P < 0.05) in the obese compared with the nonobese cotwins. The obese cotwins were also less fit, as measured by Vo(2max) (50.6 +/- 6.5 vs. 54.2 +/- 6.4 ml x kg LBM(-1) x min(-1), for obese vs. nonobese, P < 0.05), W(max) (3.9 +/- 0.5 vs. 4.4 +/- 0.7 W/kg LBM, P < 0.01) and also less active, by the Baecke leisure time physical activity index (2.8 +/- 0.5 vs. 3.3 +/- 0.6, P < 0.01). This implies that acquired poor physical fitness is associated with defective expression of the oxidative pathway components in adipose tissue mitochondria.
线粒体氧化磷酸化基因表达缺陷被认为是家族性胰岛素抵抗的关键病理生理特征。我们研究了此类缺陷是否仅由生活方式相关因素引起。在基于人群的芬兰双胞胎16研究的658对同卵双胞胎中,确定了14对肥胖不一致(体重指数差异5.2±1.8kg/m²)和10对一致(1.0±0.7kg/m²)的24 - 27岁同卵双胞胎。使用正常血糖高胰岛素钳夹技术测量全身胰岛素敏感性。利用不一致双胞胎脂肪活检的微阵列数据比较线粒体基因的转录谱。使用双能X线吸收法(DEXA)测定双胞胎的身体成分,通过自行车测力计运动试验及气体交换分析测定最大摄氧量(Vo₂max)和工作能力(Wmax)。肥胖的双胞胎比其非肥胖的同胞胰岛素敏感性更低(M值6.1±2.0 vs. 9.2±3.2mg·kg瘦体重⁻¹·min⁻¹,P<0.01)。与非肥胖的同胞相比,肥胖的双胞胎脂肪组织中参与氧化磷酸化途径(GO:0006119)的基因转录水平更低(P<0.05)。通过Vo₂max(肥胖者与非肥胖者分别为50.6±6.5 vs. 54.2±6.4ml·kg瘦体重⁻¹·min⁻¹,P<0.05)、Wmax(3.9±0.5 vs. 4.4±0.7W/kg瘦体重,P<0.01)以及Baecke休闲时间身体活动指数(2.8±0.5 vs. 3.3±0.6,P<0.01)测量发现,肥胖的双胞胎身体适应性也较差且活动较少。这意味着后天身体适应性差与脂肪组织线粒体氧化途径成分的表达缺陷有关。